#### COMMITTENTE



#### GRANFRUTTA ZANI Società Cooperativa Agricola a r.l. Via Monte Sant'Andrea, 4 - FAENZA (RA)

Tel. (+39)0546.695211 Fax (+39)0546.41775 www.granfruttazani.it - info@granfruttazani.it

**PROGETTO** 

COMUNE DI FAENZA VARIANTE 63 AL PRG 1996 SCHEDA N. 139 - Via Monte Sant' Andrea

TITOLO

# ADOZIONE RELAZIONE GEOLOGICA

GEOM. TAMARA PALMA

DANIELA VILLA

RESPONSABILE SPECIALISTICO RESPONSABILE COORDINAMENTO

| 03         |                                   |                  |                          |                         |               |
|------------|-----------------------------------|------------------|--------------------------|-------------------------|---------------|
| 02         |                                   |                  |                          |                         |               |
| 01         | ADOZIONE - INTEGRAZIONE           | A. Van Zutphen   | A. Van Zutphen           | Guido Violani           | 29/02/12      |
| OO<br>REV. | ADOZIONE<br>EMESSO PER            | A. Van Zutphen   | A. Van Zutphen           | Guido Violani APPROVATO | 28/11/11 DATA |
| TIPOLOGIA  | URBANISTICO                       | CODICE COMMESSA  |                          | TAVOLA                  |               |
| FASE       |                                   | CODICE ELABORATO |                          | _                       |               |
| STATO      | CONOSCITIVO                       | SCALA            |                          |                         | •             |
| RESPONS. P | PROGETTO ING. GUIDO VIOLANI       | COLLAE           | BOR. TECNICI<br>GEOM. MA | TTEO DONIGAGLIA         |               |
| PROGETTIS  | TI STUDIO<br>ARCH. RICCARDO CASAI | MASSIMA          | GEOM. MA                 | TTEO NERI               |               |

VIOLANI ASSOCIATI

COLLABOR. AMM.VI

ARCH. MARIA CRISTINA VIOLANI

GEOM. GIOVANNI VIOLANI

Via Bergantini, 6 - 48018 Faenza RA Italy - Tel (+39) 0546 680844 (r.a.) Fax (+39) 0546 699446 Studio Tecnico C.F. P.IVA 02061670390 www.violaniassociati.it segreteria@violaniassociati.it

#### Regione Emilia Romagna

### COMUNE DI FAENZA

Provincia di Ravenna

### RELAZIONE GEOLOGICA

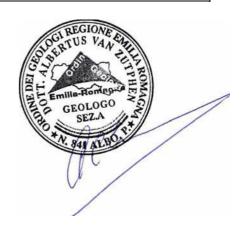
### Variante al PRG 96 Scheda n. 139 PRG Ubicazione in via Monte Sant'Andrea n. 4

#### COMMITTENTE



GRANFRUTTA ZANI Società Cooperativa Agricola a r.l. Via Monte Sant'Andrea, 4 - FAENZA (RA)

Tel. (+39)0546.695211 Fax (+39)0546.41775 www.granfruttazani.it - info@granfruttazani.it




S.G.T. sas. di Van Zutphen Albert & C.

Via Matteotti 50 48012 Bagnacavallo (RA)

www.geo55.com

| Versione | Data          |  |
|----------|---------------|--|
| 1        | Novembre 2011 |  |
| 2        | Febbraio 2012 |  |



| 1. PREMESSA                                                                                | 2    |
|--------------------------------------------------------------------------------------------|------|
| 2. LINEAMENTI GEOLOGICI GENERALI                                                           |      |
| 2.1 Lineamenti strutturali                                                                 |      |
| 3. LINEAMENTI CLIMATOLOGICI                                                                | 12   |
| 3.1. Pluviometria                                                                          |      |
| 3.2. Evapotraspirazione                                                                    |      |
| 3.3. Idrometria                                                                            | 12   |
| 4. IDRO - GEOMORFOLOGIA                                                                    | 13   |
| 5. IDROGEOLOGIA                                                                            | 19   |
| 6. LITOLOGIA SUPERFICIALE E PEDOLOGIA                                                      | 23   |
| 7. CARATTERISTICHE STRATIGRAFICHE E GEOMECCANICH                                           | E.25 |
| 7.1 Analisi di laboratorio geotecnico                                                      | 27   |
| 7.2 Down hole                                                                              |      |
| 7.2 Misure digitali del rumore sismico eseguite con il "Tromino"                           | 30   |
| 8. MICROZONAZIONE SISMICA                                                                  | 37   |
| 8.2 Liquefazione                                                                           | 45   |
| 9. CONSIDERAZIONE GEOTECNICHE                                                              | 46   |
| 9.1 Metodo utilizzato per la valutazione dei parametri geotecnici caratteristici           | 46   |
| 9.2 Valutazione dei parametri geotecnici caratteristici                                    | 49   |
| 9.1.2 Parametri geotecnici caratteristici delle unità litostratigrafiche del sito indagato | 50   |
| 9.3 Valutazione degli Stati Limite Ultimi (SLU)                                            | 53   |
| 9.4 Valutazione dello Stato Limite di Esercizio (SLE) – deformazioni irreversibili         | 54   |
| 10. CONCLUSIONI                                                                            | 57   |
| Appendice                                                                                  | 59   |
| = = -  ==                                                                                  |      |

#### 1. PREMESSA

La presente indagine preliminare è stata programmata allo scopo di fornire la base conoscitiva dei parametri geologici e geotecnici del della variante di PRG in oggetto da realizzarsi in via Monte Sant'Andrea n. 4 e finalizzata all'ampliamento dell'attuale stabilimento per la lavorazione della frutta della Cooperativa Agricola Granfruatta Zani.

In altri termini il presente studio identifica gli elementi principali della geologia locale facilitandone il confronto con le singole ipotesi di Pianificazione, fornisce gli elementi di base permettendo di operare scelte ragionate ed, infine, fornisce le indicazioni preliminari geologiche e geotecniche di massima utili per le successive fasi di approfondimento.

La presente relazione è stata condotta seguendo le varie normative di legge e/o direttive di interesse, in particolare si è fatto riferimento:

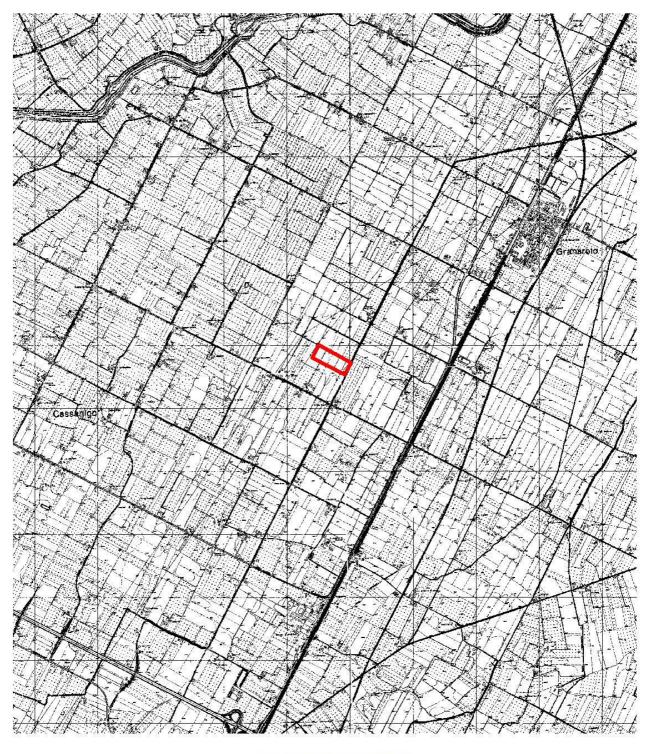
- Al D.M. 11.03.88 (sez. H) e pubblicato sul supplemento ordinario della G.U. n.127 del 01.06.88,
- Alla Circolare Regionale (Dipartimento Ambiente e Territorio) n.1288 del 11.02.1983,
- Piano Territoriale Paesistico Regionale,
- Al Piano Territoriale di Coordinamento Provinciale,
- Alla Legge nazionale 236/88 sulle captazioni idriche per il consumo umano
- Alle Norme del Piano Stralcio per l'Assetto Idrogeologico dell'Autorità di Bacino del Reno
- D.M. 14/01/2008"Norme Tecniche per le Costruzioni"
- Del.Reg.1677/2005 con indicazioni rispetto alle norme tecniche per le costruzioni in zona sismica;
- All'atto di indirizzo e coordinamento tecnico ai sensi dell'art. 16, comma 1, della L.R. 20/2000 "Indirizzi per gli studi di microzonizzazione sismica in Emilia-Romagna per la pianificazione urbanistica" approvato con D.G.R. n. 2131 del 02-05-2007.
- Al Piano Strutturale del Comune di Faenza

In questa prima fase, per la realizzazione dello studio in oggetto si è proceduto alla raccolta e selezione critica di tutti i dati bibliografici riguardanti il territorio di interesse ed un adeguato intorno; tali dati sono stati successivamente integrati tramite rilevamenti sul territorio ed indagini geognostiche sul sito in esame: n. 4 CPTU, n. 1 sondaggio, n. 1 down hole, n. 3 tromini e n. 2 piezometri. Inoltre sono state analizzate le caratteristiche litostratigrafiche e geomeccaniche del sottosuolo del territorio oggetto di studio, elaborando, alla luce di quanto emerso, una serie di considerazioni sui possibili rischi geologici dell'area oggetto di variante e dei relativi approfondimenti necessari per completare il quadro geologico, geotecnico e idrogeologico.

Pertanto scopo della presente relazione sarà quella di individuare gli eventuali rischi geologici, in senso lato, e di indicare le eventuali opportune azione di mitigazione degli stessi a cui si si dovrà attenere in fase di realizzazione dell'espansione urbanistica. Ovvero della necessità di realizzare ulteriori analisi di approfondimento.

Brevemente si riporta la relazione del rischio a cui ci si è fatto riferimento nel presente elaborato.

R=H\*V\*E


Dove

R = rischio

H = pericolosità

V = vulnerabilità

E = elementi a rischio



**COROGRAFIA** 





**VOLO AIMA 1996** 

Area oggetto di variante al prg



#### 2. LINEAMENTI GEOLOGICI GENERALI

Le caratteristiche fisiche generali, la composizione litologica, l'assetto strutturale, il grado di stabilità attuali di un territorio sono la risultante e la sintesi della sua evoluzione geologica.

Per una migliore comprensione della geologia del territorio in esame, risulta utile avere un quadro, sia pure schematico e riassuntivo, dei lineamenti e della storia geologica della più ampia unità regionale di cui l'area in esame è parte.

Il territorio dove si trova la località Sant'Andrea è inserito, anche se in modo marginale, nel vasto bacino sedimentario della Valle Padana e più precisamente nel lembo sud-orientale della stessa, delimitato a Nord dal corso del Po e a Sud dalle propaggini collinare dell'Appennino Romagnolo.

La storia geologica di questa pianura, la sua genesi e le sue vicissitudini evolutive possono essere ricondotte, nel loro insieme, ad un lento e progressivo ricoprimento del settore meridionale della fossa occupata dall'alto Adriatico già a partire dalla fase centrale della orogenesi alpina, da un lato, e di quella appenninica, dall'altro, cioè nell'oligocene, come confermano le risultanze della perforazioni condotte nell'area per ricerche di idrocarburi.

L'attuale assetto geologico è la risultante di un complesso avvicendamento di fasi erosive in alternanza a fasi prevalentemente sedimentarie, sia in senso verticale sia in senso orizzontale, in relazione al perdurare di una dinamica di abbassamenti del substrato, di fenomeni di subsidenza del materasso alluvionale che si stava formando, con conseguenti arresti della regressione marina o addirittura episodi di ingressione e formazione di fasi lagunari lungo la fascia preappenninica.

Solo nel Quaternario più recente l'assetto tettonico manifesta una sorta di equilibrio raggiunto e, alla prevalente tendenza alla subsidenza e deposizione prevalentemente marina, subentra un periodo di più estesi fenomeni sedimentari fluviali, ai quali è concomitante il progressivo ritiro del mare verso la configurazione dell'attuale costa.

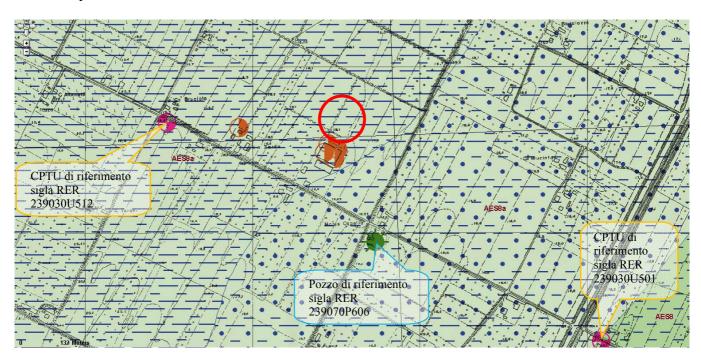
Il quaternario è contraddistinto da una fase deposizionale marina iniziale (Pleistocene) e una fase deposizionale continentale (Olocene) che prosegue anche attualmente.

La stratigrafia pleistocenica presenta frequenti variazioni litologiche. Le sabbie si intercalano a sedimenti più fini limoso sabbiosi o limoso argillosi, e nelle parti sommitali si fanno sempre più frequenti litotipi di ambiente lagunare salmastro.

La stratigrafia olocenica è dominata dalla più recente regressione marina in concomitanza con le grandi glaciazioni intervallate da lunghi periodi di clima più mite durante i quali prevale l'azione di trasporto dei numerosi corsi d'acqua.

Il limite Olocene-Pleistocene, cioè alluvioni-Quaternario marino, presenta una profondità di circa 60 m ÷ 80 m in corrispondenza dell'allineamento Massa Lombarda - Lugo - Bagnacavallo, risalendo lateralmente fra i 20 m e 40 m in corrispondenza delle zone di Alfonsine e di Cotignola - Bagnara.

Da quanto esposto risulta che il bacino subsidente padano, ed in particolare il suo settore sudorientale, è un'area geologicamente giovane e conseguentemente instabile. Questo carattere di instabilità permane tuttora.


Infatti, in base alla ripetizione delle livellazioni I.G.M., si è verificato, ed è probabilmente ancora in atto, un innalzamento delle regioni poste ad occidente dell'asse Genova-Brescia, ed un abbassamento ad oriente con epicentro nel delta del Po, ed indici più elevati nella costa adriatica.

In particolare l'area di interesse è inserita nella bassa pianura faentina, che si estende a quota inferiore di 19/16m s.l.m., ed é costituita da alluvionali depositatesi in gran parte in età storica, in particolare età post-romana, a granulometria prevalentemente fine (sabbie, limi e argille), con suoli calcarei e poco evoluti. Essa si caratterizza, sotto l'aspetto geomorfologico, per una "freschezza" delle morfologie fluviali, tra cui sono riconoscibili soprattutto i dossi e paleodossi fluviali, cioé gli argini naturali subattuali o estinti dei principali corsi d'acqua.

Nell'area in esame la cartografia del PSC Faentino evidenzia la presenza di alluvioni di interdosso di pianura caratterizzata da argille e limi prevalenti. Tale cartografia risulta coerente con la carta

geologica della Regione Rmilia-Romagna che pone l'area di interesse su depositi interfluviali, ai margini di un paleodosso che si trova verso Est.

Al di sotto di questa copertura si rinviene la conoide del F. Lamone che nella zona di interesse si trova alla profondità di circa 30 metri.



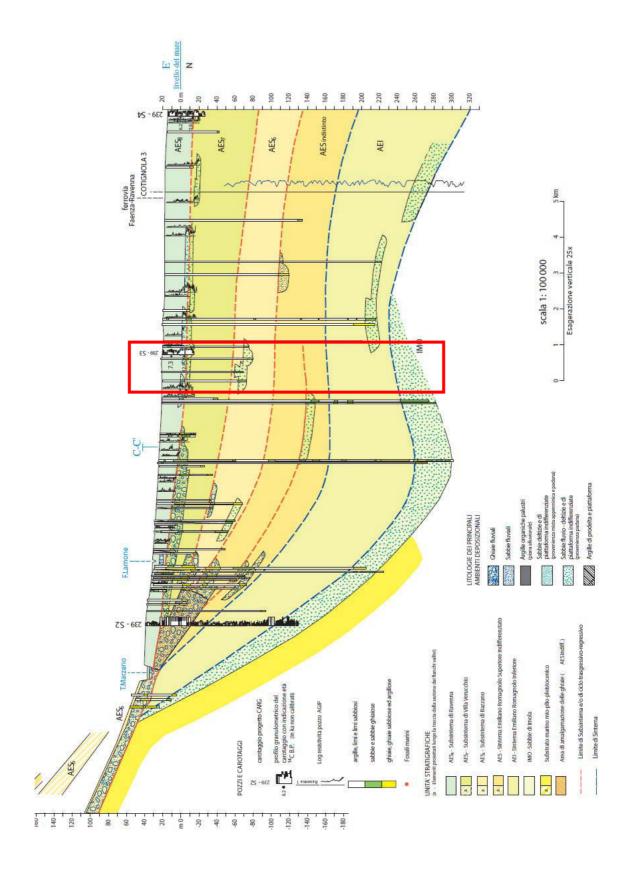
| AES8 - Subsintema di Ravenna                                                              |
|-------------------------------------------------------------------------------------------|
| AES8a - Unità di Modena                                                                   |
| Deposito di piana inondabile (area interfluviale) - Argilla Limosa                        |
| Deposito di canale, argine e rotta fluviale - Sabbia Limoso Argillosa - Piana alluvionale |

#### AES8 - Subsintema di Ravenna

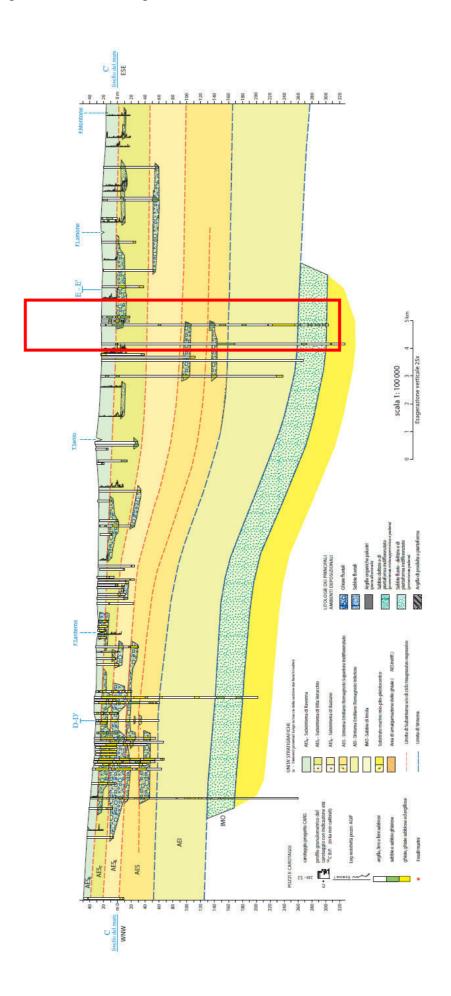
Ghiaie da molto grossolane a fini con matrice sabbiosa, sabbie e limi stratificati con copertura discontinua di limi argillosi, limi e limi sabbiosi, rispettivamente depositi di conoide ghiaiosa, intravallivi terrazzati e di interconoide. L'unità comprende più ordini di terrazzo nelle zone intravallive. Argille, limi ed alternanze limoso-sabbiose di tracimazione fluviale (piana inondabile, argine, e tracimazioni indifferenziate). Il tetto dell'unità è rappresentato dalla superficie deposizionale, per gran parte relitta, corrispondente al piano topografico. A tetto suoli, variabili da non calcarei a calcarei, a basso grado di alterazione con fronte di alterazione potente meno di 150 cm, e a luoghi parziale decarbonatazione; orizzonti superficiali di colore giallo-bruno. I suoli non calcarei e scarsamente calcarei hanno colore bruno scuro e bruno scuro giallastro, spessore dell'alterazione da 0,5 ad 1,5 m, contengono frequenti reperti archeologici di età del Bronzo, del Ferro e Romana. I suoli calcarei appartengono all'unita' AES8a. nel sottosuolo della pianura: depositi argillosi e limosi grigi e grigio scuri, arricchiti in sostanza organica, di piana inondabile non drenata, palude e laguna passanti, verso l'alto, a limi-sabbiosi, limi ed argille bruni e giallastri di piana alluvion Il contatto di base è discontinuo, spesso erosivo e discordante, sugli altri subsintemi e sulle unità più antiche. Lo spessore massimo dell'unità è circa 20m.

Pleistocene sup. - Olocene

#### AES8a - Unità di Modena


Ghiaie prevalenti e sabbie, ricoperte da una coltre limoso argillosa discontinua, talora organizzate in corpi a geometrie lenticolari, nastriformi, tabulari e cuneiformi. Depositi alluvionali intravallivi, terrazzati (primo ordine dei terrazzi nelle zone intravallive), deltizi, litorali, di conoide e, localmente, di piana inondabile. Nella costa e nel Mare Adriatico sabbie di cordone litorale e di fronte deltizia passanti ad argille e limi di prodelta e di transizione alla piattaforma. Limite superiore coincidente con il piano topografico dato da un suolo calcareo di colore bruno olivastro e bruno grigiastro. Il profilo di alterazione è di esiguo spessore (meno di 100 cm). Può ricoprire resti archeologici di età romana del VI secolo d.C Lo spessore massimo dell'unità è generalmente di alcuni metri, talora plurimetrico.

Olocene


Sezioni geologiche tratte dal sito del Servizio Geologico, Sismico e dei Suoli della Regione Emilia-Romagna



Sezione geologica di riferimento 1 per la zona.



Sezione geologica di riferimento 2 per la zona.



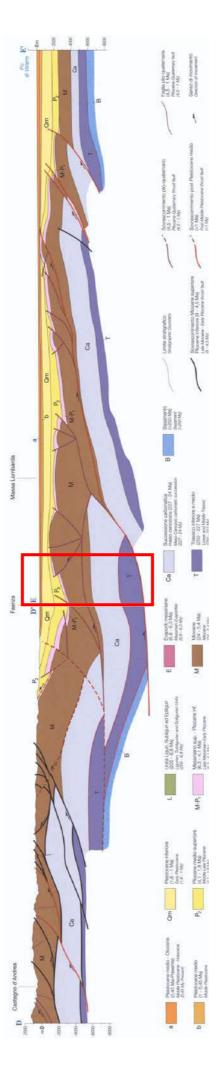
#### 2.1 Lineamenti strutturali

Lo schema strutturale locale è caratterizzato da uno stile a pieghe, di norma asimmetriche con vergenza verso N, ad andamento NW-SE con frequenti ondulazioni assiali ed una immersione generale verso SE.

Nei terreni neogenici il piegamento è avvenuto in due fasi distinte tra Miocene e Pliocene e prima del Pliocene medio. La seconda fase ha influito maggiormente nell'area emilano-romagnola, dove la discordanza tra i termini del Miocene e quelli del Pliocene inferiore è attenuata, mentre si osserva un più accentuato piegamento ed una maggiore erosione dei termini del pliocene inferiore.

Ai fenomeni plicativi si sovrappone la già citata subsidenza differenziale, con deposizione più intensa nelle sinclinali e minore al culmine delle anticlinali.

Le pieghe pedeappenniniche sono accompagnate dallo sviluppo di faglie a carattere distensivo, talora grandiose, e sono inoltre sovente interrotte da faglie con direzione NE-SW con rigetto prevalentemente orizzontale.


Nella più ampia unità di territorio in esame da N a S si riconoscono i seguenti motivi strutturali principali:

- Sinclinale di S.Romualdo-Piombone;
- Antinclinale di Ravenna e di Alfonsine;
- Sinclinale romagnola (asse ONO-ESE passante in corrispondenza di Fusignano);
- Antinclinale di Cotignola;
- Sinclinale di Forlì.

Le strutture sepolte plioceniche influenzano, sia pure con grado decrescente col diminuire della profondità, l'assetto dei sedimenti pleistocenici, che risultano blandamente ondulati e presentano una generale pendenza verso SE secondo l'immersione degli assi strutturali pliocenici.

I sedimenti alluvionali recenti hanno un assetto più irregolare ed articolato. Infatti pur avendo una tendenziale e debole pendenza verso NE secondo la direzione di deflusso degli attuali corsi appenninici, presentano variazioni di potenza anche rilevanti, derivanti da ondulazioni del letto con depressioni ad andamento appenninico, probabilmente riferibili a paleoalvei.





#### 3. LINEAMENTI CLIMATOLOGICI

Il territorio della località di interesse è climatologicamente inquadrabile in un regime sublitoraneo padano.

Il graduale passaggio da condizioni climatiche di tipo costiere, presenti lungo il litorale ravennate, a condizioni di tipo padano si rendono sempre più manifeste procedendo verso il retroterra. In tal modo nell'area di pianura in cui rientra il territorio della località analizzata si registrano condizioni climatiche che sono tipiche della pianura interna e che vedono nella temperatura dell'aria, nell'umidità e nella ventosità, le maggiori diversificazioni rispetto alla pianura costiera.

In questa area, il clima assume una individuale fisionomia i cui aspetti significativi sono costituiti da una maggiore escursione termica giornaliera, un aumento del numero di giornate con gelo, un aumento di frequenza delle formazioni nebbiose, una attenuazione della ventosità.

Meno evidenti risultano invece le diversificazioni negli apporti pluviometrici rispetto alla pianura costiera.

#### 3.1. Pluviometria

All'interno del territorio in cui ricade la località di S.Andrea non sono ubicate stazioni pluviometriche, pertanto per valutare il regime pluviometrico si farà riferimento alla stazione di Faenza (alt. 35 m s.l.m.), capoluogo della località in esame.

Considerando un periodo trentennale (01.01.1956 - 31.12.1985), l'altezza di precipitazione media annua risulta:

Faenza 757.2 mm

Considerando che il territorio in esame ricade in prossimità della stazione di Faenza, si può considerare una altezza di precipitazione media di 757 mm/anno, media per il periodo di trenta anni suddetto. L'apporto annuo medio risulta quindi di 757.000 mc/kmq.

#### 3.2. Evapotraspirazione

Sulla base dei dati della stazione climatologica di Faenza, per la quale si rendono disponibili anche i dati termometrici, la temperatura media annua estesa al territorio comunale risulta di 13.7 °C, la temperatura media minima risulta di 9.1 °C, mentre la temperatura massima media risulta di 18.2 °C.

La relativa evapotraspirazione media annua, calcolata con la formula di L. Turc valida per grandi bacini, risulta:

$$ETR=P/0.9+(P^2/L^2)$$

dove:

P = precipitazione media annua (757 mm)

 $T = \text{temperatura media annua } (13.7^{\circ} \text{ C})$ 

 $L = 300 + 15*T + 0.05*T^3$ 

ETR = 757/2.33 = 324 mm = 42% delle precipitazioni

Pertanto a livello molto indicativo risulta che 433 mm di afflussi meteorici defluiscono attraverso il reticolo idrografico superficiale o si infiltrano nel sottosuolo, mentre i restanti 324 mm vengono restituiti all'atmosfera per evapotraspirazione.

#### 3.3. Idrometria

Il complesso reticolo idrografico del territorio in esame è il risultato di tutta una serie di interventi antropici che hanno agito sui corsi d'acqua naturali e hanno creato canali artificiali per lo scolo delle acque.

Limitando l'analisi ad alcune considerazioni di carattere generale utili ai fini della identificazione dei problemi idrogeologici del territorio in esame, si considera il comportamento di analoghi bacini di pianura a deflusso noto avendo come riferimento i dati emersi dal presente studio.

Il coefficiente teorico medio per bacini di pianura ha valori compresi tra 0.1 e 0.2, considerando però che nel territorio in esame è presente una rete scolante artificiale che risulta esercitare una prevalente azione drenante, solo in parte compensata dalle perdite locali del reticolo idrografico naturale, si può ritenere probabile un coefficiente di deflusso pari a 0.3, per cui si avrebbe:

$$I = 757 - 324 - 227 = 206 \text{ mm}$$

In definitiva l'infiltrazione efficace annuale alimentante la falda freatica risulterebbe mediamente di 206 mm, quindi con un apporto di 206.000 mc/kmq.

#### 4. IDRO - GEOMORFOLOGIA

Il territorio di interesse è situato proprio al centro tra il Torrente Senio ed il Fiume Lamone, in un'area interfluviale.

L'esame della carta ipsometrica evidenzia una superficie topografica costituita da un piano inclinato in direzione NE con pendenza media di circa il due per mille.

L'area in esame è inserita all'interno di due principali elementi emergenti antropici costituiti rispettivamente dalla S.P. n. 8 Naviglio con l'adiacente Canale Naviglio Zanelli, corso d'acqua di ex-forza motrice, posti ad ad una distanza di circa 840 m a Est, e dal sistema arginato del T. Senio, a circa 3000 m a Ovest del sito in esame.

L'area non risulta essere stata allagata durante l'evento estremo del 1996. Tale evento corrisponde a tempi di ritorno di 100 anni, evidenziando la sua sicurezza idraulica rispetto al sistema della bonifica.

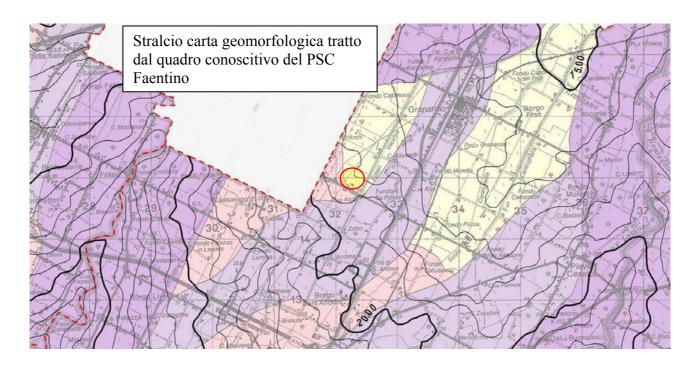
L'attuale morfologia dell'area in esame è il risultato di un intenso rimodellamento antropico che, a scopo di bonifica, ha obliterato gli originali lineamenti geomorfologici, e ha praticamente sostituito tutto il reticolo idrografico naturale con un denso reticolo artificiale.

Tutto il reticolo idrografico presenta direzione di scorrimento generale verso NNE e le acque dell'area in esame risultano essere scolate dal Fosso Vecchio, scolo di bonifica principale della zona, che scorre in adiacenza Est dell'area in esame e recapita le acque direttamente nel Destra Reno a Nord di Alfonsine.

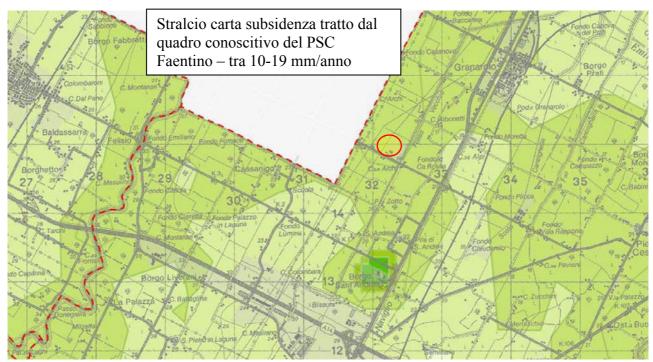
Lo scolo corre incassato e sul lato Ovest presenta delle depressioni artificiali che per la loro posizione possono fungere da cassa di laminazione sia per l'invarianza idraulica si a per eventuali tracimazioni delle scolo.

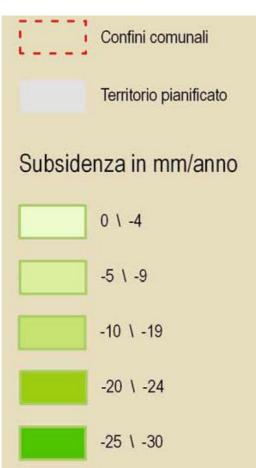
L'analisi degli allagamenti accaduti durante l'evento eccezionale del 1996 (tempo di ritorno di 100 anni) ricavata dai dati provinciali, non evidenzia allagamente dell'area oggetto di variante.

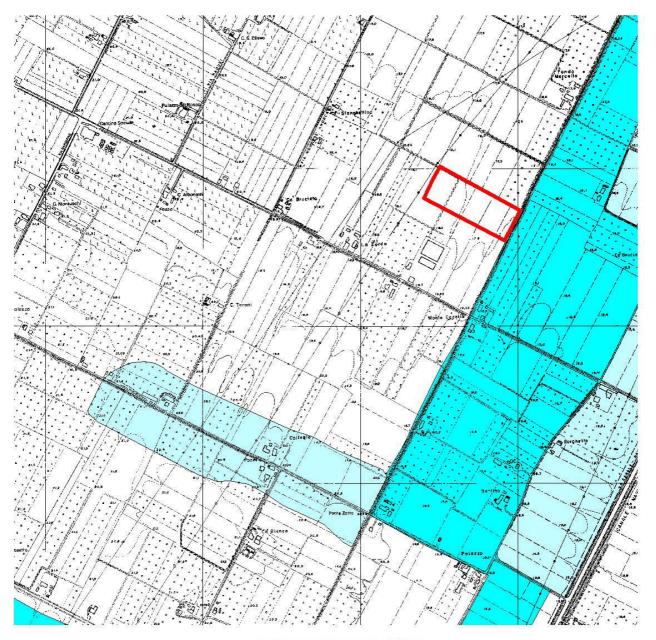
Al riguardo si è proceduto alla realizzazione del DEM di pianura della zona in cui ricade l'area in esame. A partire da tale elaborazione, si sono poi analizzati i massimi tiranti idrici previsti nella zona in caso di allagamento, indipendentemente dall'origine e dalla probabilità, utilizzando la funzione "identify sink" dell'applicativo Hydro.


Tale elaborato ha evidenziato delle possibili zone di accumulo in alcuni punti dell'area oggetto di variante, con possibili tiranti idrici corrispondenti ad un'altezza di circa 20÷30 cm sopra al piano di campagna attuale.

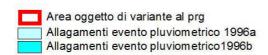
Pertanto in fase di urbanizzazione, a favore della sicurezza considerato che dalle analisi del passato gli allagamenti con T100 appaiono poco probabili, risulta comunque opportuno che per i futuri fabbricati il piano di calpestio sia posto almeno circa 40 cm sopra l'attuale piano di campagna.


Infine, osservando la perimetrazione del Piano Stralcio del T. Senio, dell'AdB Reno, nell'ultima versione, si evidenzia che l'area di lottizzazione risulta esclusa da possibili allagamenti dai corsi d'acqua naturali.

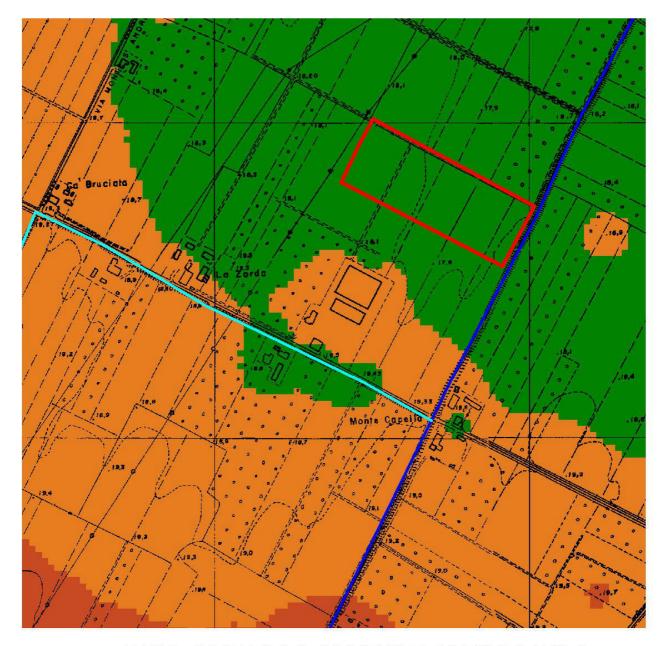

Infine si osserva che il trend si subsidenza della zona, ricavato dalla cartografica del PSC Faentino, risulta compreso tra 10 e 19 mm/anno.


Infine non sussistono interferenze con il perimetro delle aree allagate di cui alla D.G.R. n. 1071/98.

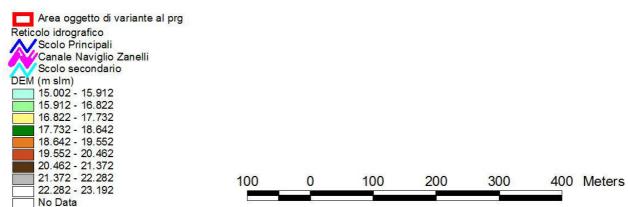



| Morfolo | gie fluviali                                                   |
|---------|----------------------------------------------------------------|
|         | Aree alluvionali terrazzate intravallive e della media pianura |
|         | Aree alluvionali in evoluzione                                 |
|         | Aree alluvionali di interdosso                                 |
|         | Dossi fluviali sub-attuali                                     |
|         | Paleodossi fluviali                                            |



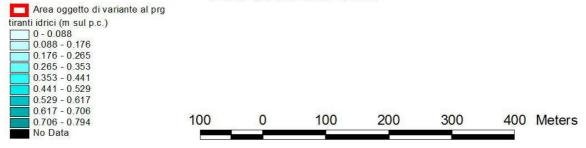






ALLAGAMENTI evento eccezionale del 1996



100 0 100 200 300 400 Meters




**DEM - MODELLO DIGITALE ALTIMETRICO** 





### TIRANTI IDRICI ATTESI IN CASO ALLAGAMENTI



#### 5. IDROGEOLOGIA

La falda libera superficiale ha una particolare incidenza ed un ruolo peculiare ai fini edificatori, sia per quanto riguarda la sua possibile influenza sui parametri del carico ammissibile, sia per la salubrità degli edifici, sia per le possibili invasioni di acqua in eventuali scantinati, sia per la sua influenza sulla risposta sismica del terreno.

Al fine di caratterizzare la falda freatica del zona di interesse si fatto riferimento allo studio è freatimetrico realizzato dalla relazione geologica allegata al PRG 96, eseguendo opportune verifiche in campagna che hanno confermato i caratteri idrogeologici del territorio emersi dal suddetto precedente studio.

Per l'area in esame il suddetto studio evidenzia valori compresi tra -2.0 m e -3.0 m dal piano di campagna.

I livelli misurati nelle prove eseguite all'interno dell'attuale stabilimento e in alcuni pozzi adiacenti, ha evidenziato valori compresi tra -1.3 m (prova n. 2 del 1998) e -3.3 m (prova 4 del 1985) dal p.c.. Lo studio geognostico eseguito sul sito di interesse ha evidenziato la presenza di un livello di falda superficiale presente alla profondità attorno 2÷2.6 m dal piano di campagna, ed una falda freatica contenuta nei sottostanti livelli sabbioso-limosi che presenta un livello attorno a 1.1÷1.3 m dal piano di campagna.

Le misure effettuate in data 29-02-2012 sui piezometri, installati alla profondità di circa -6.0 m dal p.c., ha evidenziato un livello attorno a -1.25 m dal piano di campagna. Tale livello può considerarsi massimo idrogeologico essendo stato rilevato subito dopo lo scioglimento di una abbondante nevicata, circa 1 metro, occorsa tra il 1 ed il 10 febbraio 2012.

I rilievi dei livelli della falda freatica hanno evidenziato la presenza di una falda superficiale sospesa, contenuta nei livelli limoso-argillosi che si equilibria con quella contenuta nei livelli sabbiosi posti più in profondità, a partire da circa 9 m dal p.c., solo in occasione di significativi apporti pluviometrici.

|          | Misura dei livelli della falda freatica all'interno dei fori penetromerici |                                     |                                     |                             |  |  |  |  |
|----------|----------------------------------------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------|--|--|--|--|
| n. prova | Data misura                                                                | Livello freatico<br>Prof. m da p.c. | Piezometro<br>installato<br>prof. m | note                        |  |  |  |  |
| 1        | 24-01-2012                                                                 | Foro chiuso                         |                                     | Quota piano di campagna     |  |  |  |  |
| 2        | 24-01-2012                                                                 | 2.20                                | 6                                   | Quota piano di campagna     |  |  |  |  |
| 3        | 24-01-2012                                                                 | 2.00                                | 6                                   | Quota piano di campagna     |  |  |  |  |
| 4        | 24-01-2012                                                                 | 2.30                                |                                     | Quota piano di campagna     |  |  |  |  |
| 5        | 17-02-2012                                                                 | 2.60                                |                                     | Quota piazzale stabilimento |  |  |  |  |
| 6        | 17-02-2012                                                                 | 2.60                                |                                     | Quota piazzale stabilimento |  |  |  |  |

| Misui    | Misure effettuate con dissipazioni durante l'esecuzione delle prove penetrometriche |                                                 |                                                               |                                                   |                            |  |  |  |  |  |
|----------|-------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|----------------------------|--|--|--|--|--|
| n. prova | Data misura                                                                         | Profondità<br>di<br>dissipazione<br>(m da p.c.) | Livello piezometrico misurato a fine dissipazione (m da p.c.) | Tipo litologico<br>ricavato dalla<br>dissipazione | Permeabilità<br>(k=cm/sec) |  |  |  |  |  |
| 1        | 24-01-2012                                                                          | 15                                              | 1.30                                                          | Sabbia                                            | 2.8*10 <sup>-4</sup>       |  |  |  |  |  |
| 2        | 24-01-2012                                                                          | 12.2                                            | 1.2                                                           | Sabbia limosa e limo sabbioso                     | 6.7*10 <sup>-5</sup>       |  |  |  |  |  |
| 3        | 24-01-2012                                                                          | 20                                              | 1.1                                                           | Sabbia limosa e limo<br>sabbioso                  | 3.2*10 <sup>-5</sup>       |  |  |  |  |  |
| 4        | 24-01-2012                                                                          | 9.4                                             | 1.2                                                           | Sabbia                                            | 3.78*10 <sup>-4</sup>      |  |  |  |  |  |

| Misure piezometriche                   |             |                     |  |  |  |  |  |
|----------------------------------------|-------------|---------------------|--|--|--|--|--|
| Piezometro, n. prova<br>corrispondente | Data misura | Livello (m da p.c.) |  |  |  |  |  |
| 2                                      | 29-02-2012  | 1.25                |  |  |  |  |  |
| 3                                      | 29-02-2012  | 1.25                |  |  |  |  |  |

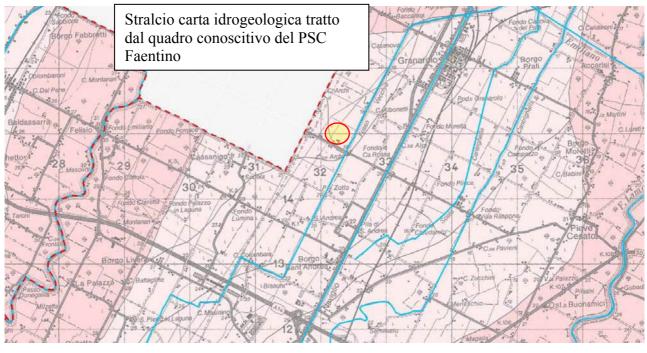
Pertanto il livello posto attorno a 2.0÷2.5 m dal p.c. deve considerarsi un valore di medio idrogeologico, caratterizzante la falda sospesa superficiale, ed in accordo i livelli freatici riportati nel PRG 96.

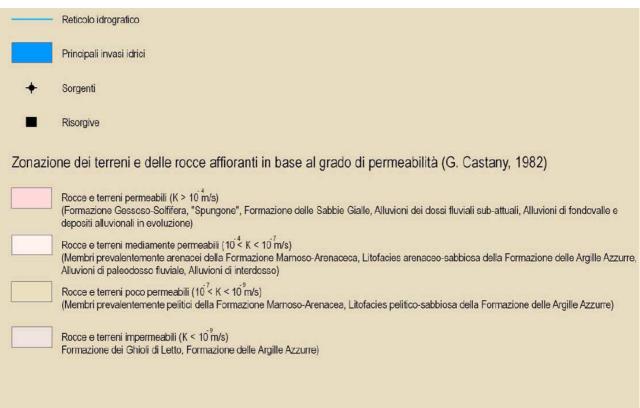
I monitoraggi effettuati hanno permesso di definire il livello freatico massimo uguale ad un livello di circa -1.2 m dal piano di campagna attuale del sito oggetto di variante.

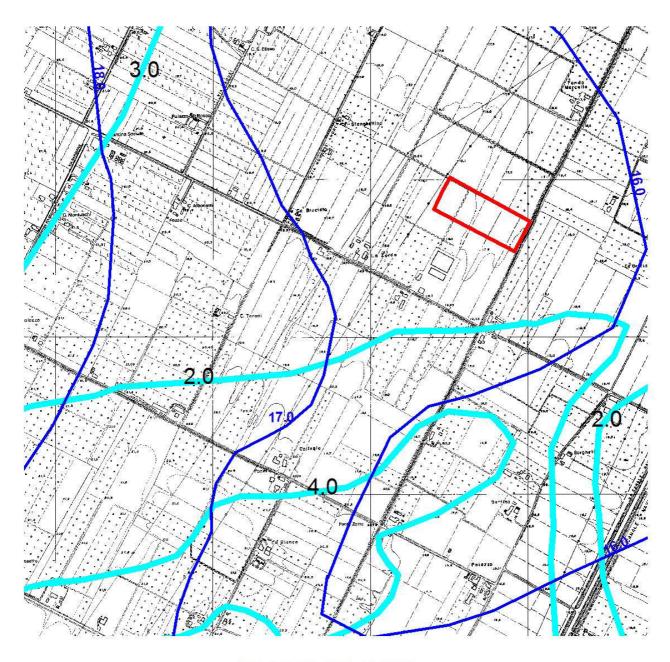
Tale livello massimo risulta allineato con i livello della falda idrica contenuta nei livelli sabbiosolimosi presenti a partire da circa -9.0 m dal piano di campagna attuale.

Pertanto, in generale, si osserva che i valori misurati della falda superficiale risultano in accordo con le misure effettuate per la relazione geologica della Variante Generale di PRG 2006.

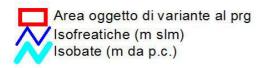
L'analisi della carta delle isofratiche evidenzia che l'area in esame si trova in adiacenza Est ad una linea di deflusso delle acque freatiche.


La schema idrogeologico profondo è caratterizzato da una copertura alluvionale di terreni sostanzialmente impermeabili che ricoprono e proteggono la sottostante conoide distale del Fiume Lamone, che contiene i principali acquiferi della zona.


Per avere una visione della stratigrafia idrogeologica si riporta quella ricavata dalla scheda di un pozzo in adiacenza all'area di interesse e estratto dal data base della Regione Emilia-Romagna.


#### Pozzo di riferimento sigla 239070P606

| Prof. da p.c. (m) | Descrizione litologica tratta dalla | Falda captata |
|-------------------|-------------------------------------|---------------|
|                   | scheda pozzo                        |               |
| Da 0 a 6 m        | argilla                             |               |
| Da 6 a 9 m        | sabbia                              |               |
| Da 9 a 31 m       | Argilla                             |               |
| Da 31 a 35 m      | Sabbia                              | Falda captata |
| Da 35 a 63 m      | Argilla e torba                     |               |
| Da 63 a 90 m      | argilla                             |               |
| Da 90 a 95 m      | sabbia                              | Falda captata |

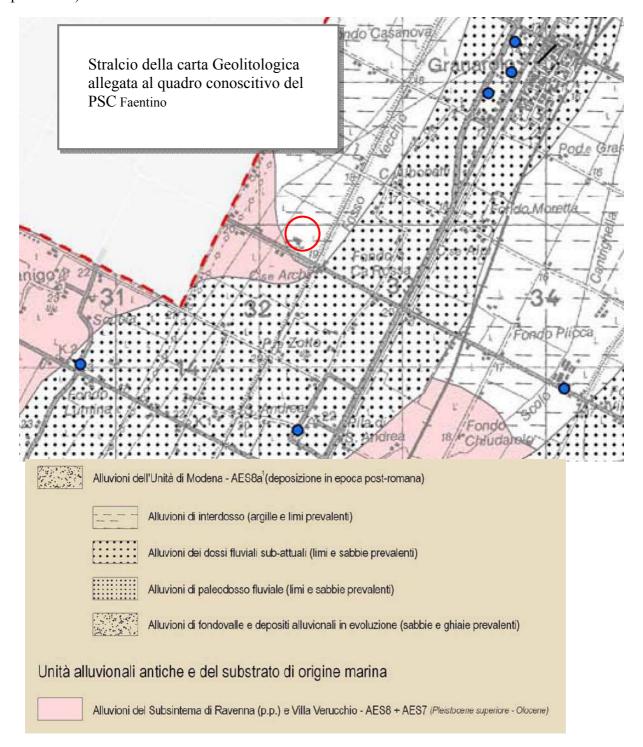

La scheda riporta un livello statico a circa -17 m dal p.c. nel 1989. Tale livello non risulta molto diverso da quello riscontrato in un pozzo della rete ARPA (CodiceRA17-01) presente poco a sud dell'area in esame che evidenzia per le misure del 2007 un livello compreso tra 17.5 m e 21.1 m.







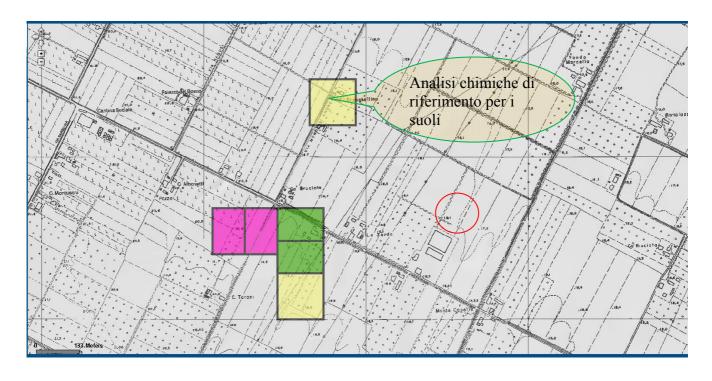
### **IDROGEOLOGIA**






#### 6. LITOLOGIA SUPERFICIALE E PEDOLOGIA

La carta Geologia e dei Suoli Regionale evidenzia per la massima parte dell'ara in esame litologie sabbie prevalenti limoso argillose di piana alluvionale.


In base alla carta geolotilogica allegata al quadro conoscitivo del PSC Faentino, l'area risulta interessata da alluvioni dell'Unità di Modena – AES8a – alluvioni di interdosso (argille e limi prevalenti).



La pedologia evidenzia per l'area in esame suoli appartenenti alla consociazione dei suoli SANT'OMOBONO franco argilloso limosi. Il cui assetto colturale ottimale è a vigneti, frutteti: pomacee, barbabietole da zucchero.

Alcune analisi agronomiche realizzate in adiacenza alla zona in esame realizzate dal servizio pedologico della Regione Emilia-romagna, evidenzia i seguenti valori:

| Campione<br>Analisi<br>terreno | Prof.<br>cm | Sabbia<br>% | Limo<br>% | Argilla % | Mat.<br>org.<br>% | pH<br>in<br>H2O | Calc<br>tot<br>% | Calc<br>attivo | K2O<br>ass.<br>% | P2O5<br>ass.<br>% | Ntot % |
|--------------------------------|-------------|-------------|-----------|-----------|-------------------|-----------------|------------------|----------------|------------------|-------------------|--------|
| 29563                          | 0-20        | 16          | 52        | 32        | 2                 | 7.6             | 20               | 9              | 420              | 188               | 1.4    |
| 29564                          | 0-20        | 18          | 54        | 24        | 2.1               | 7.5             | 21               | 9              | 500              | 185               | 1.8    |
| 53503                          | 20-80       | 16          | 52        | 32        | 1.9               | 7.6             | 19               | 10             | 310              | 119               | 1.4    |
| 53502                          | 20-80       | 18          | 52        | 30        | 1.9               | 7.5             | 20               | 9              | 380              | 126               | 1.5    |



## 7. CARATTERISTICHE STRATIGRAFICHE E GEOMECCANICHE

Al fine di comprendere le caratteristiche litostratigrifiche e geotecniche dell'area oggetto di variante al PRG sono state eseguite n. 4 prove penetrometriche ed un sondaggio a carotaggio continuo con prelievo di campioni indisturbati.

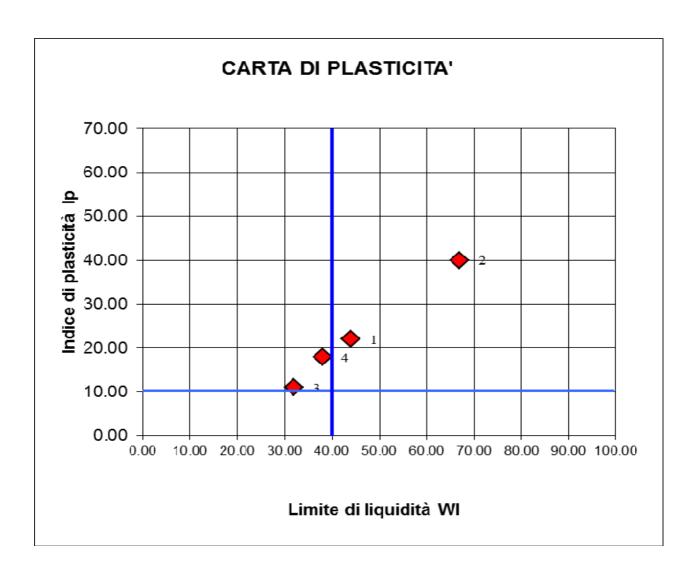
Inoltre si è fatto riferimento anche a n. 2 prove eseguite in corrispondenza dell'attuale stabilimento ed alle prove eseguite in passato per la realizzazione dei fabbricati dello stabilimento esistente, oltre a considerare anche prove profonde realizzate nella zona dalla Regione Emilia-Romagna nell'ambito del progetto CARG.

Per le prove penetrometriche CPTE e CPTU è stato utilizzato un penetrometro statico elettrico dotato di punta elettrica e con piezocono costruita secondo la tipologia "Gouda" che ha permesso l'acquisizione dei dati ogni 2 cm di avanzamento.

La punta presentava in ogni caso dimensioni standard europee:

- Punta conica per la misura della resistenza alla punta con area pari a cmq 10 ed angolo di 60°;
- Manicotto per la misura dell'attrito laterale di cmq 150;
- Sensore inclinometrico per controllare la deviazione delle aste dalla verticale;
- Sensore di temperatura per correggere deriva dovuta al cambiamento di temperatura.

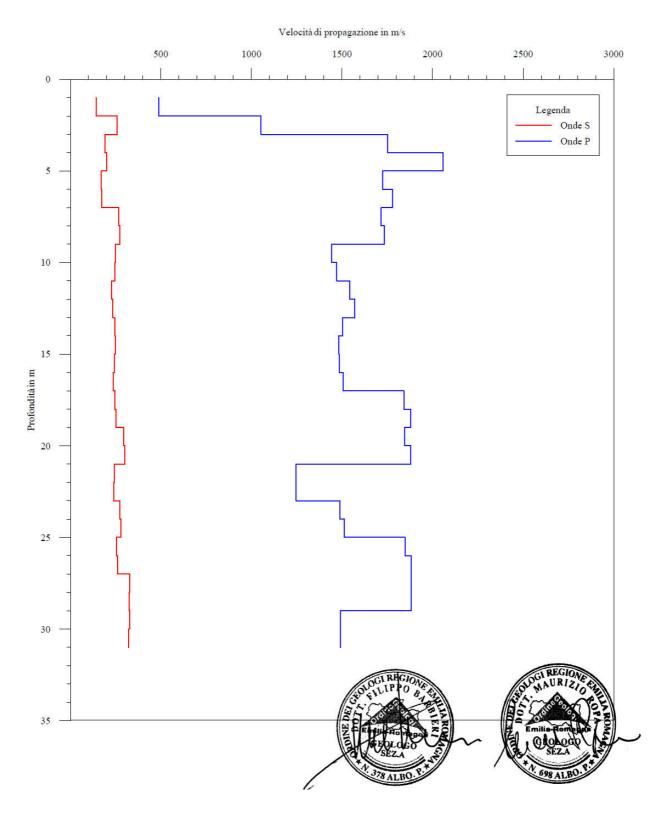
Dall'esame dei dati di lettura sono state costruite le curve che si riferiscono alla resistenza alla punta (Qc), alla resistenza all'attrito laterale (Fs) le cui rappresentazioni grafiche vengono riportate nei diagrammi allegati. Dall'indice di comportamento Ic, che è funzione di Qc e Fs/Qc, si è giunti alla classificazione dei terreni seguendo la metodologia suggerita dal Robertson in 1990 e utilizzando le metodologie suggerite dalla lettaratura sono stato ricostruite le caratteristiche meccanico-fisiche di ciascuna porzione di terreno.


Uno sguardo complessivo ai grafici ricavati dalle prove penetrometriche evidenzia:

| Unità | Da 0.0 m a −1.0 m dal p.c.                                                                 |                                |  |  |  |  |  |  |
|-------|--------------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|--|--|
| A     | terreno agrario di alterazione superficiale areato;                                        |                                |  |  |  |  |  |  |
|       |                                                                                            |                                |  |  |  |  |  |  |
|       | Da -1.0 m circa a -20.0 m dal piano di campagna                                            |                                |  |  |  |  |  |  |
|       | Per questo unità si possono distinguere due                                                | Sottounità B1                  |  |  |  |  |  |  |
|       | sottounità.                                                                                | Profondità                     |  |  |  |  |  |  |
|       | terreni limoso argillosi intercalazioni, luoghi                                            | da 1.0 m a circa -7÷8 m        |  |  |  |  |  |  |
|       | anche frequenti, di livelli sabbioso limose con                                            | e                              |  |  |  |  |  |  |
|       | spessore da centimetrico a decimetrico fino a                                              | da circa -16 m a circa -20 m   |  |  |  |  |  |  |
|       | metrico, a partire da circa -7.0÷9.0 m dal p.c                                             | 1 4 1: :11                     |  |  |  |  |  |  |
|       | In particolare nella zona della prova n. 1 e del                                           | prevalente limo argilloso      |  |  |  |  |  |  |
|       | sondaggio si riscontra una maggiore frequenza dei livelli sabbioso-limosi.                 | Sottounità B2                  |  |  |  |  |  |  |
| Unità | I rapporti litostratigrafici risultano lentiformi ad                                       | Sottouinta B2                  |  |  |  |  |  |  |
| В     | indicazione di un ambiente deposizionale                                                   | Da -7÷8 m a circa -16 m        |  |  |  |  |  |  |
| Б     | caratterizzato da divagazione dei corsi d'acqua                                            |                                |  |  |  |  |  |  |
|       | naturali.                                                                                  | Terreni limoso argillosi a     |  |  |  |  |  |  |
|       | I litotipi limoso argillosi presentano consistenza                                         | scheletro sabbioso con         |  |  |  |  |  |  |
|       | prevalentemente plastica. I valori                                                         | frequenti intercalazioni di    |  |  |  |  |  |  |
|       | penetrometrici sono mediamente compresi tra                                                | livelli sabbioso-limosi e      |  |  |  |  |  |  |
|       | 1.4 MPa e 2.0 MPa; i livelli limoso-sabbiosi                                               | limoso-sabbioso con            |  |  |  |  |  |  |
|       | presentano valori penetrometrici medi compresi                                             | spessore da centimetrico a     |  |  |  |  |  |  |
|       | tra 3÷5 MPa e 5÷6 MPa, valori massimi                                                      | decimetrico fino a metrico.    |  |  |  |  |  |  |
|       | rilevati in corrispondenza della prova n. 1                                                | Rapporti litostratigrafici     |  |  |  |  |  |  |
|       |                                                                                            | lentiformi.                    |  |  |  |  |  |  |
|       | D : 20 200 11 : 1:                                                                         |                                |  |  |  |  |  |  |
|       | Da circa –20 m a –30.0 m dal piano di ca                                                   | ampagna, massima profondità    |  |  |  |  |  |  |
| Unità | <i>indagata</i> Terreni sabbiosi addensati con valori penetrometrici compresi tra 16 MPa e |                                |  |  |  |  |  |  |
| С     | 19÷20 MPa. Presenza di un livello ghiaia in mati                                           | -                              |  |  |  |  |  |  |
|       | m dal p.c                                                                                  | 1100 Saudiosa na 27.3 m C 30.0 |  |  |  |  |  |  |
|       | in dui p.c                                                                                 |                                |  |  |  |  |  |  |
| Unità | Da -30  m  a -32.0  m  dal  piano  di  campagna,  ma                                       | assima profondità indagata     |  |  |  |  |  |  |
| D     | Terreni argilloso-limosi a consistenza plastica.                                           |                                |  |  |  |  |  |  |

Nel complesso i terreni del substrato dell'area oggetto di studio presentano omogeneità litostratigrafia, in particolare in relazione al volume significativo interessato dalla opere previste nella variante al PRG. Si deve comunque segnalare la presenza di un maggiore contenuto sabbioso a partire dalla profondità di circa -7÷9 m dal p.c. per la zona corrispondente alla prova n.1 ed al sondaggio.

**7.1 Analisi di laboratorio geotecnico**In occasione della realizzazione del sondaggio sono stati prelevati n. 4 campioni indisturbati atti ad essere sottoposti ad analisi di laboratorio geotecnico.


|                                  |                    |           |                       | _                      |          |               |          |  |  |  |
|----------------------------------|--------------------|-----------|-----------------------|------------------------|----------|---------------|----------|--|--|--|
|                                  | CARATTERISTIC      | NICHE     |                       |                        |          |               |          |  |  |  |
| Committente:                     | ANTER COSTRUZIONI  |           |                       |                        |          |               |          |  |  |  |
|                                  | Variante PRG via M | Ionte     |                       |                        |          |               |          |  |  |  |
| Cantiere                         | Sant'Andrea        |           |                       |                        |          |               |          |  |  |  |
| Località                         | Sant'Andrea Faenza |           |                       |                        |          |               |          |  |  |  |
| Sondaggio N.                     |                    |           | 1                     | 1                      | 1        | 1             | 1        |  |  |  |
| Campione                         |                    |           | 1                     | 2                      | 3        | 4             | spt1     |  |  |  |
| N. progr. campione               |                    | 1         |                       |                        |          | 165           |          |  |  |  |
| prof. di prelievo                |                    | m da p.c. | -1.1-1.6              | 5.5-6.1                | 12-12.60 | 16.5-<br>17.1 | 9-9.45   |  |  |  |
| Caratteristiche fisiche naturali |                    |           |                       |                        |          |               |          |  |  |  |
| contenuto in acqua               | W                  | %         | 20.36                 | 32.24                  | 31.30    | 27.10         |          |  |  |  |
| peso unità vol. naturale         | γ                  | g/cmc     | 1.93                  | 1.87                   | 1.89     | 1.99          |          |  |  |  |
| peso unità vol. saturo           | γs                 | g/cmc     | 2.00                  | 1.92                   | 1.92     | 2.00          |          |  |  |  |
| peso unità vol. secco            | γd                 | g/cmc     | 1.60                  | 1.41                   | 1.44     | 1.57          |          |  |  |  |
| peso specifico                   | g                  | g/cmc     | 2.74                  | 2.77                   | 2.77     | 2.75          |          |  |  |  |
| porosità                         | n                  | %         | 41.28                 | 0.47                   | 48.00    | 42.80         |          |  |  |  |
| indice dei vuoti                 | e                  |           | 0.70                  | 0.92                   | 0.92     | 0.75          |          |  |  |  |
|                                  |                    |           |                       |                        |          |               |          |  |  |  |
| Limiti di Atterberg              |                    |           |                       |                        |          |               |          |  |  |  |
| limite liquido                   | Wl                 | %         | 44.00                 | 67.00                  | 32.00    | 38.00         |          |  |  |  |
| limite plastico                  | Wp                 | %         | 22.00                 | 27.00                  | 21.00    | 20.00         |          |  |  |  |
| indice plastico                  | Ip                 |           | 22.00                 | 40.00                  | 11.00    | 18.00         |          |  |  |  |
| Analisi granulometrica           |                    |           |                       |                        |          |               |          |  |  |  |
| ghiaia                           | >2 mm              | %         | 0.00                  | 0.00                   | 0.00     | 0.00          | 0.00     |  |  |  |
| sabbia                           | 0,4 mm             | %         | 7.00                  | 5.00                   | 12.00    | 10.00         | 62.00    |  |  |  |
| limo                             | 0,074 mm           | %         | 65.00                 | 45.00                  | 73.00    | 72.00         | 31.00    |  |  |  |
| argilla                          | 0,02 mm            | %         | 28.00                 | 50.00                  | 15.00    | 18.00         | 7.00     |  |  |  |
| Prova edometrica                 |                    |           |                       |                        |          |               |          |  |  |  |
| coef. di consolidazione          | mv                 | mq/kN     | 1.69*10 <sup>-4</sup> | 3.83*10 <sup>-4</sup>  |          |               | <u> </u> |  |  |  |
| permeabilità                     | kv                 | m/sec     | 2.2*10 <sup>-10</sup> | 3.82*10 <sup>-10</sup> |          |               |          |  |  |  |
|                                  | N,                 | 111, 500  |                       | 3.02 10                |          |               |          |  |  |  |
| Angolo di attrito                | C.D.               | gradi     | 23.00                 |                        |          |               |          |  |  |  |
| Coesione                         | C.D.               | kg/cmq    | 0.24                  |                        |          |               |          |  |  |  |
|                                  | ~                  |           | 1.0-                  | 0.07                   | 0.01     | 0.11          |          |  |  |  |
| Consistenza relativa             | Cr                 |           | 1.07                  | 0.87                   | 0.06     | 0.61          | 1        |  |  |  |
| Indice liquidità                 | $I_{\rm L}$        |           | -0.07                 | 0.13                   | 0.94     | 0.39          | -        |  |  |  |
| Indice di gruppo                 |                    |           | 22                    | 44                     | 9        | 16            |          |  |  |  |



#### 7.2 Down hole

Il sondaggio geognostico è stato attrezzato con apposita camicia atta per la realizzazione di un down hole.

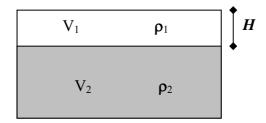
La misure di down hole ha evidenziato un Vs30 = 241 m/s.



#### 7.2 Misure digitali del rumore sismico eseguite con il "Tromino"

Dalle misure sismiche passive (Tromino) è possibile giungere alla valutazione dell'amplificazione sismica di risonanza del substrato di interesse e della Vs30, valore più significativo per valutare la risposta sismica di un determinato sito.

Infatti i maggiori danni a seguito di un sisma di progetto si hanno proprio per corrispondenza tra periodo proprio del sottosuolo e quello della struttura in esame, con possibilità che si abbiano pericolosi fenomeni di risonanza.


Il Tromino è uno strumento in grado di misurare i microtremori. Il tremore sismico, comunemente definito "rumore sismico", esiste ovunque sulla superficie della terra. Esso è principalmente costituito da onde superficiali, ovvero da onde elastiche prodotte dall'interferenza costruttiva di onde P ed S che si propagano negli strati superficiali. Il rumore sismico è prodotto essenzialmente dal vento o dalle onde marine. A questo rumore di fondo, che è sempre presente, si sovrappongono le sorgenti locali, antropiche (traffico, industrie ecc.) e naturali. I microtremori sono solo in parte costituiti da onde di volume, P o S. In essi giocano un ruolo fondamentale le onde superficiali, che hanno velocità prossima a quella delle onde S, il che spiega la dipendenza di tutta la formulazione della velocità di queste ultime.

Dai primi studi di Kanai (1957) in poi, diversi metodi sono stati proposti per estrarre l'informazione relativa al sottosuolo da rumore sismico registrato in un sito. Tra questi, la tecnica che si è maggiormente consolidata nell'uso è quella dei rapporti spettrali tra le componenti del moto orizzontale e quella verticale (Horizontal to Vertical Spectral Ratio, HVSR o H/V), proposta da Nogoschi e Igaraschi (1970). La tecnica è universalmente riconosciuta come efficace nel fornire stime affidabili della frequenza fondamentale di risonanza del sottosuolo.

Le basi teoriche dell'H/V sono relativamente facili da comprendere in un mezzo del tipo strato + bedrock (o strato assimilibale al bedrock) in cui i parametri sono costanti in ciascuno strato. Considerando lo schema della figura sottostante in cui gli strati 1 e 2 si distinguono per le diverse densità ( $\rho_1$  e  $\rho_2$ ) e le diverse velocità delle onde sismiche ( $V_1$  e  $V_2$ ). Un'onda così riflessa interferisce con quelle incidenti, sommandosi e raggiungendo le ampiezze massime (condizioni di risonanza) quando la lunghezza dell'onda incidente ( $\lambda$ ) è 4 volte (o suoi multipli dispari) lo spessore H del primo strato. La frequenza fondamentale di risonanza (fr) dello strato 1 relativa alle onde S è pari a

$$fr = \frac{V_{s1}}{4*H}$$

Questo effetto è sommabile, anche se non in modo lineare e senza corrispondenza 1:1. Ciò significa che la curva H/V relativa ad un sistema a più strati contiene l'informazione relativa alle frequenze di risonanza ( e quindi dello spessore) di ciascuno di essi, ma non è interpretabile semplicemente applicando la sopra riportata equazione.



L'inversione richiede l'analisi delle singolo componenti e del rapporto H/V, che fornisce un importante normalizzazione del segnale per a) in contenuto di frequenza, b) la risposta strumentale

e c) l'ampiezza del segnale quando le registrazioni vengono effettuate in momenti con rumore di fondo più o meno alto.

Un aspetto assai importante è che il rumore sismico agisce come sorgente di eccitazione per la risonanza del sottosuolo e degli edifici più o meno come una luce bianca diffusa illumini gli oggetti eccitando le lunghezze d'onda tipiche di ciascun oggetto e dandogli il suo tipico colore.

Questo risulta molto importante a livello ingegneristico perché se un edificio ha frequenze proprie di vibrazione uguali a quelle del substrato su cui è fondato, durante un sisma, si assiste al fenomeno dell'accoppiamento delle vibrazioni. Questo effetto di amplificazione sismica produrrà un grande aumento della sollecitazione sugli edifici.

La calibrazione delle misure dei microtremori è stata eseguita in base alle indagini geognostiche eseguite sul sito di indagine.

Nell'area è stato eseguito uno stendimento SASW/MASW e n. 1 Tromini (T1) in corrispondenza della SASW/MASW, quindi utilizzato per l'inversione della curva in combinazione con la misura SASW/MASW.

Sul sito sono state eseguite due prove ed impiegando la suddetta metodologia dei microtremori hanno evidenziato, utilizzando l'inversione H/V con il metodo proposto da Nakamura, secondo la teoria descritta da Aki (1964) e Ben-Menahem & Sing (1981), una *Vs30 attorno a 213÷227 m/s*.

L'analisi delle frequenze fondamentali di amplificazione del sito evidenzia l'amplificazione di risonanza tipica del terreno e, di conseguenza, l'altezza critica degli edifici che in caso di sisma possono entrare in risonanza con il terreno.

Nel caso specifico è possibile individuare le seguenti frequenze tipiche per il deposito esaminato, significative per gli edifici

| Frequenza | Periodo |  |  |  |
|-----------|---------|--|--|--|
| (f=Hz)    | (T=sec) |  |  |  |
| 0.95      | 1.05    |  |  |  |

Tale aspetto risulta certamente più significativo della valutazione della Vs30. Infatti una struttura risulta particolarmente vulnerabile se presenta un periodo di vibrazione simile a quello del sottosuolo, potendo essere soggetta ad un fenomeno di amplificazione per risonanza.

#### Altezza critica degli edificio per doppia risonanza

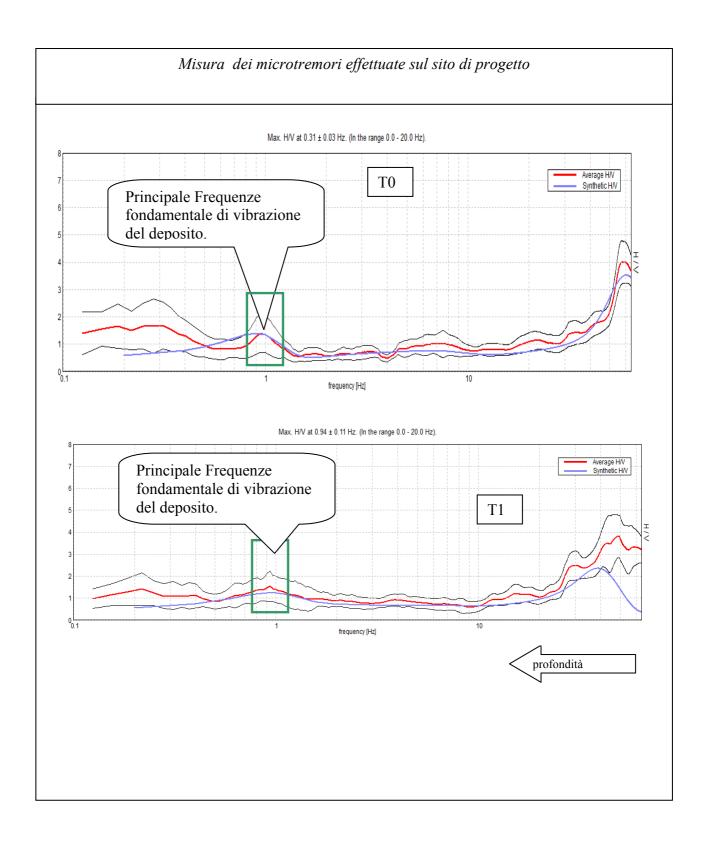
Il modo di vibrare fondamentale dell'edificio in progetto può essere stimato utilizzando la formula riportata al paragrafo 7.3.3.2 delle NTC 2008:

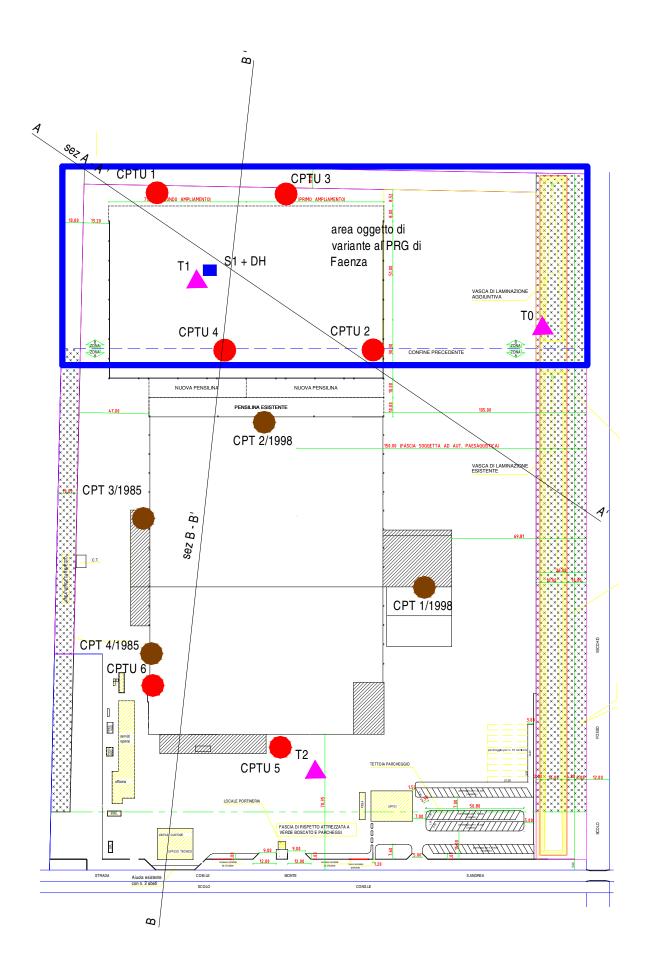
$$T_1 = C_1 * H^{3/4}$$

#### Dove

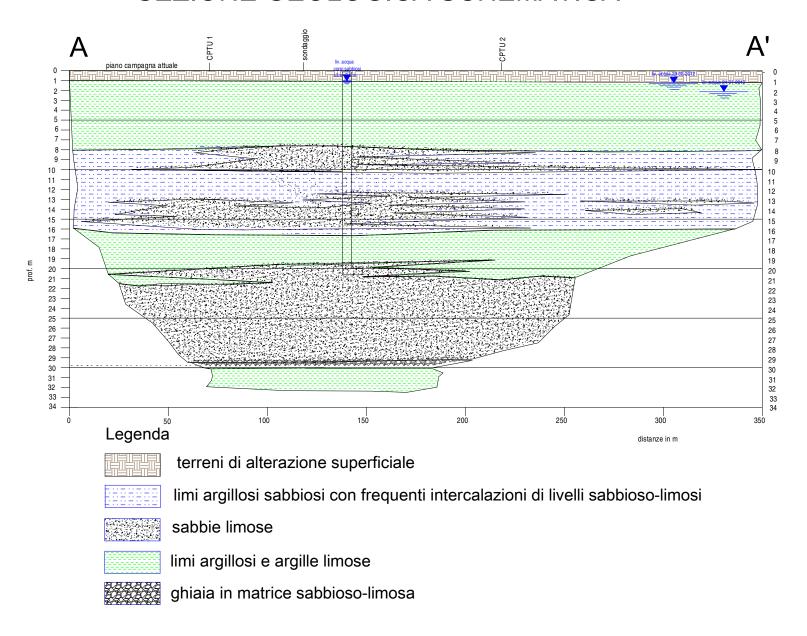
 $T_1$  = modo di vibrare principale dell'edificio nella direzione in esame

 $C_1$  = coefficiente che vale 0.085 per costruzioni con struttura a telaio in acciaio, 0.075 per costruzioni con struttura a telaio in calcestruzzo armato, 0.05 per costruzioni con qualsiasi altro tipo di struttura

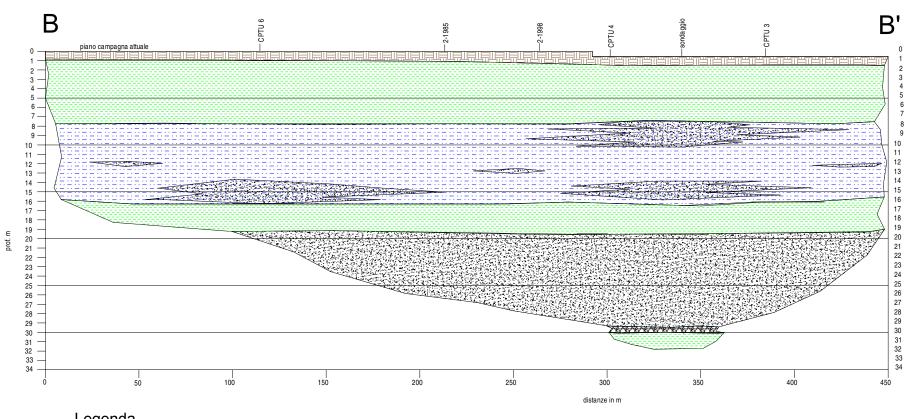

H = altezza della costruzione, in metri, dal piano di fondazione.


Pertanto con periodo fondamentale del sottosuolo pari a T=0.95 ed in subordine 0.11 sec, l'altezza critica degli edifici risulterà

| Altezza critica degli edifici per effetti di risonanza |      |                                                           |                                                         |                                                         |       |                                                                                                  |                                                                                        |                                                                                                             |  |
|--------------------------------------------------------|------|-----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| N.<br>Misura                                           | Vs30 | Frequenze<br>fondamentali<br>di risonanza<br>del deposito | Periodi<br>fondamentali di<br>risonanza del<br>deposito | Altezza critica<br>edifici in<br>muratura<br>(n. piani) |       | Altezza critica dal piano di fondazione di edifici a telaio in calcestruzzo armato $C_1 = 0.075$ | Altezza critica dal piano di fondazione di edifici con struttura qualsiasi $C_1$ =0.05 | Altezza critica dal piano di fondazione di edifici con struttura a telaio in acciaio  C <sub>1</sub> =0.085 |  |
|                                                        | m/s  | (Hz)                                                      | T (sec)                                                 |                                                         |       | (m)                                                                                              | (m)                                                                                    | (m)                                                                                                         |  |
| Т1                                                     | 213  | 0.95                                                      | 1.05                                                    | 10.53                                                   | 12.63 | 33.85                                                                                            | 58.13                                                                                  | 28.65                                                                                                       |  |


I suddetti valori risultano unicamente di massima e di guida per la progettazione.

Comunque le verifiche del modello sismico sulle opere in progetto potranno essere utilmente confrontate con la frequenza fondamentale del sito indagato.






## SEZIONE GEOLOGICA SCHEMATICA



## SEZIONE GEOLOGICA SCHEMATICA



## Legenda



limi argillosi sabbiosi con frequenti intercalazioni di livelli sabbioso-limosi

sabbie limose

limi argillosi e argille limose

ghiaia in matrice sabbioso-limosa

## 8. MICROZONAZIONE SISMICA

Da quanto riportato sul PSC Faentino l'area appartiene ad un ambito con depositi di terreni granulari da sciolti a mediamente addensati oppure coesivi da poco a mediametne consistenti, caratterizzati da valori di Vs30 variabili tra <180 e 360 m/s.

Questa area non rientra tra quelle analizzate da un punto di vista sismico. Ad ogni modo, a livello indicativo, si osserva che ricade tra due aree, quella attorno a Granarolo e quella posta subito a Nord dell'autostrada, su cui è prevista un'analisi di secondo livello.

#### N.T.C. 14-01-2008

Le misure dei microtremori, realizzate con il "Tromino", confrontate con le idagini geognostiche realizzate nella zona, hanno permesso di verificare una Vs30 attorno a 213÷242 m/s, quindi suoli di categoria C.

| Zona simica                                               | 2         |
|-----------------------------------------------------------|-----------|
| Latitudine                                                | 44.3566   |
| Longitudine                                               | 11.9165   |
| Tipo di opera                                             | 2         |
| Classe d'uso                                              | Classe II |
| Vita Nominale (V <sub>N</sub> )                           | >=50 anni |
| Coefficiente d'uso (C <sub>U</sub> )                      | 1.0       |
| Vita di riferimento $(V_N \times C_U)$                    | 50 anni   |
|                                                           |           |
| Accelerazione su suolo di riferimento rigido - SLV (ag/g) | 0.199     |
| Categoria di sottosuolo                                   | С         |
| Coefficiente di amplificazione per tipo di suolo (S)      | 1.41      |
| Categoria topografica (T1)                                | 1.0       |
| Coefficiente di amplificazione per categoria topografica  | 1.0       |
| $(S_T)$                                                   |           |
| Accelerazione massima al suolo $(a_{max}/g)=(ag/g)*S*S_T$ | 0.281     |

#### D.G.R. n. 112/2007

L'area di interesse si trova in ambiente di "PIANURA 2" avendo il substrato con vs>800 m/s ad una profondità sicuramente superiore ai -100 m, come riscontrabile dalla Carta Sismotettonica pubblicata dalla Regione Emilia-Romagna e come osservabile dalla curva h/v del tromino che evidenzia il bedrock con Vs>800 m/s a frequenze attorno a 0.4÷1 Hz, quindi molto profonde.

Sempre da tale cartografia si osserva che il meccanismo focale sismico si riferisce a comportamenti compressivi (faglia inversa).

Al comune di Faenza viene attribuita una accelerazione massima al suolo riferita a suoli molto rigidi ( $Vs_{30}>800$  m/s) corrispondente ad ag=0.205g.

| ievono           | usare re      | seguenti       | tabene.       |                |         |           |     |     |     |     |
|------------------|---------------|----------------|---------------|----------------|---------|-----------|-----|-----|-----|-----|
|                  |               |                |               |                |         |           |     |     |     |     |
| F.A. P.C<br>Vs30 | 200           | 250            | 300           | 350            | 400     | 450       | 500 | 600 | 700 | 800 |
|                  |               |                |               |                |         |           |     |     |     |     |
| F.A.             | 1.5           | 1.5            | 1.5           | 1.4            | 1.4     | 1.4       | 1.3 | 1.1 | 1.0 | 1.0 |
| E A TNT          | •             |                | •             |                | •       | •         | •   |     |     |     |
|                  | _             |                |               |                | To < 0. |           | 500 | 600 | 700 | 900 |
| Vs <sub>30</sub> | TENSIT<br>200 | A' SPE'<br>250 | TTRALE<br>300 | E - 0.1s < 350 | To < 0. | 5s<br>450 | 500 | 600 | 700 | 800 |
|                  | _             |                |               |                | 1       |           | 500 | 600 | 700 | 800 |
| Vs <sub>30</sub> | 1.8           | 250            | 300           | 350            | 400     | 1.4       |     |     |     |     |
| Vs <sub>30</sub> | 1.8           | 250            | 300           | 350            | 1.5     | 1.4       |     |     |     |     |

La prova down-hole ha evidenziato, una Vs30 media attorno a 213 m/s. Pertanto il fattore di amplificazione da utilizzare saranno

- F.A. P.G.A. = 1.5
- F.A. INTENSITA' SPETTRALE 0.1s < To < 0.5s = 1.8
- F.A. INTENSITA' SPETTRALE 0.5s < To < 1.0s = 2.5

Per quanto riguarda l'ag al suolo attribuita al sito in esame, facendo sempre riferimento alla già citata D.G.R., si ha un valore pari a ag=0.205\*1.5=0.307g, quindi superiore a quanto ottenuto seguendo le procedure della normativa nazionale.

A titolo indicativo in appendice viene riportato la modellazione sismica del sito di interesse con l'utilizzo del modello EERA. Le elaborazioni hanno evidenziato valori di accelerazione sismica al suolo compresa tra ag=0.21 ed ag=0.25, valori in ogni caso inferiori sia a quanto ricavata in base alle NTC 2008 ed alla D.G.R. n.112/2007.

## OSSERVAZIONI SISMICHE DISPONIBILI PER FUSIGNANO (tratto da INGV) Codice Descrizione del parametro

#### Loc denominazione della località (sito)

(secondo l'authority modificata come descritto al paragrafo 4) Lat latitudine del sito

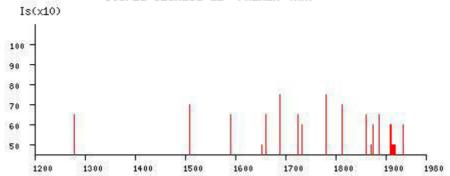
(idem) Lon longitudine del sito

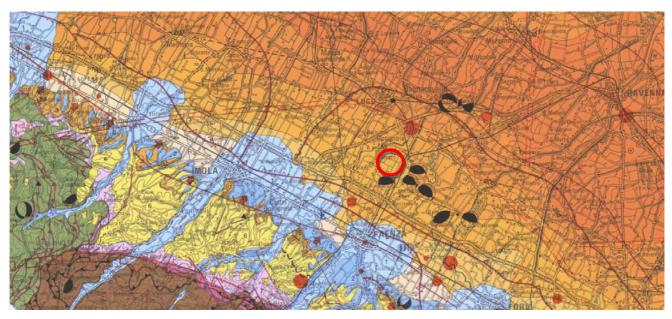
(idem) Is intensità al sito (x10)

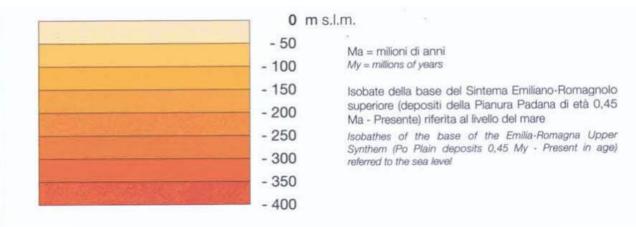
(si ricorda che valori tipo 65, 75 stanno per 6/7, 7/8; essi indicano incertezza fra i due valori interi, non valori "intermedi" di intensità)

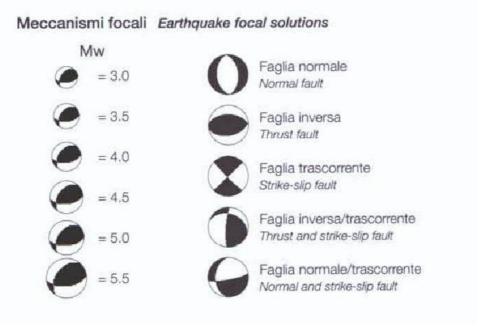
Sc casi particolari (special case).

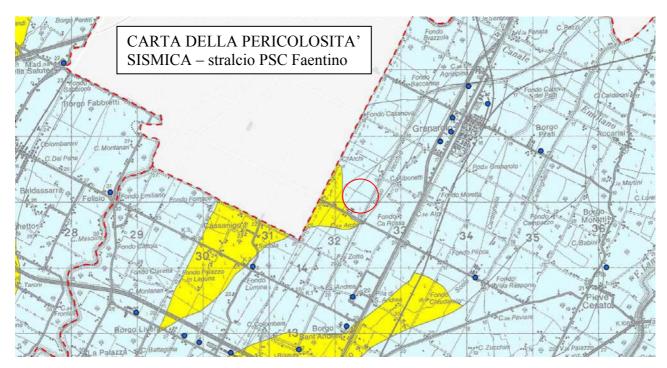
Può assumere i seguenti valori (App.2):

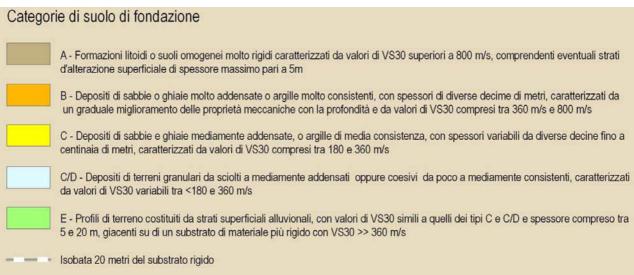

- DL località abbandonata (deserted locality)
- AL località assorbita (absorbed locality)
- MS agglomerato multiplo (multiple settlement)
- **TE** territorio (territory)
- SS piccolo agglomerato (small settlement)
- SB edificio isolato (solitary building)
- ID danno a singolo edificio (isolated damage)

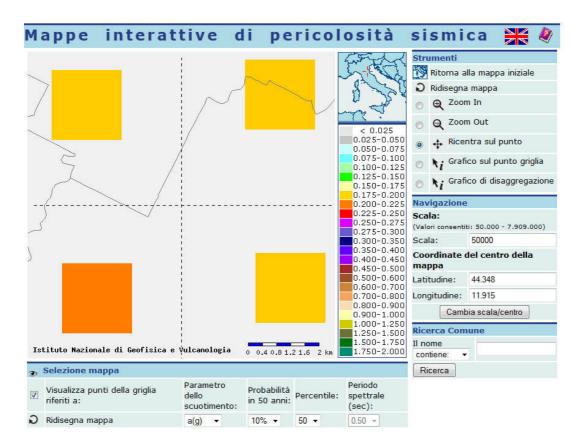

Osservazioni sismiche (46) disponibili per FAENZA (RA) [44.288, 11.881]

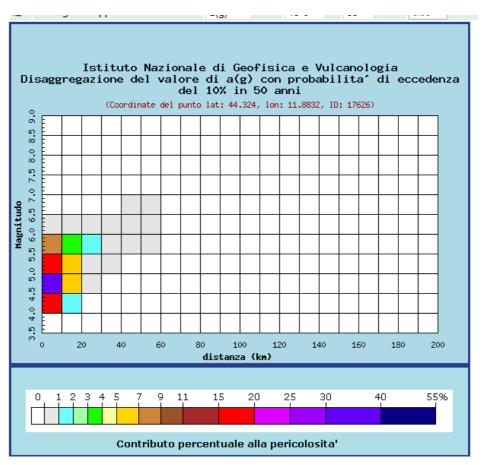

|      | Da  | ata |    |    | Effetti  | in occasione del terrem | oto di | :  |
|------|-----|-----|----|----|----------|-------------------------|--------|----|
| Ye   | Мо  | Da  | Но | Mi | Is (MCS) | Area epicentrale        | Ix     | Ms |
| 1688 | 0.4 | 11  | 11 | 30 | 75       | ROMAGNA                 | 90     | 62 |
|      |     |     | 11 | 30 |          |                         |        | -  |
| 1781 | 04  | 04  |    |    | 75       | FAENTINO                | 90     | 62 |
| 1509 | 04  | 19  |    |    | 70       | FAENZA                  | 70     | 50 |
| 1781 | 07  | 17  | 09 | 10 | 70       | FAENTINO                | 80     | 55 |
| 1813 | 09  | 21  |    |    | 70       | FAENZA                  | 70     | 50 |
| 1279 | 04  | 30  |    |    | 65       | ROCCA SAN CASCIANO      | 75     | 52 |
| 1591 | 07  | 10  |    |    | 65       | FORLI`                  | 65     | 47 |
| 1661 | 03  | 22  | 12 | 45 | 65       | CIVITELLA DI ROM.       | 90     | 62 |
| 1725 | 10  | 28  |    |    | 65       | FAENTINO                | 70     | 50 |
| 1861 | 10  | 16  |    |    | 65       | FORLI`                  | 70     | 47 |
| 1887 | 09  | 30  | 15 | 52 | 65       | FAENZA                  | 65     | 44 |
| 1732 | 08  | 09  |    |    | 60       | FAENZA                  | 60     | 44 |
| 1875 | 03  | 17  |    |    | 60       | RIMINI                  | 80     | 52 |
| 1909 | 01  | 13  | 00 | 45 | 60       | BASSA PADANA            | 65     | 54 |
| 1911 | 02  | 19  | 07 | 18 | 60       | FORLIVESE               | 75     | 52 |
| 1935 | 06  | 05  | 11 | 48 | 60       | FAENTINO                | 60     | 51 |
| 1117 | 01  | 03  | 13 |    | D        | VERONESE                | 90     | 64 |
| 1653 | 08  | 15  |    |    | 50       | CESENA                  | 65     | 47 |
| 1870 | 10  | 30  |    |    | 50       | MELDOLA                 | 80     | 55 |
| 1913 | 07  | 21  | 22 | 35 | 50       | VALLE DEL LAMONE        | 60     | 47 |
| 1914 | 10  | 27  | 09 | 22 | 50       | GARFAGNANA              | 70     | 58 |
| 1916 | 08  | 16  | 07 | 06 | 50       | RIMINESE                | 80     | 61 |


| 1918 | 11 | 10 | 15 | 12 | 50 | S.SOFIA            | 80  | 58 |
|------|----|----|----|----|----|--------------------|-----|----|
| 1919 | 06 | 29 | 15 | 06 | 50 | MUGELLO            | 90  | 63 |
| 1931 | 04 | 05 | 13 | 34 | 45 | FAENTINO           | 65  | 47 |
| 1672 | 04 | 14 | 15 | 15 | 40 | RIMINI             | 80  | 55 |
| 1929 | 07 | 18 | 21 | 02 | 40 | MUGELLO            | 70  | 47 |
| 1930 | 10 | 30 | 07 | 13 | 40 | SENIGALLIA         | 85  | 60 |
| 1936 | 10 | 18 | 03 | 10 | 40 | BOSCO CANSIGLIO    | 90  | 58 |
| 1924 | 01 | 02 | 08 | 55 | 35 | SENIGALLIA         | 75  | 55 |
| 1931 | 09 | 05 | 01 | 26 | 35 | FIRENZUOLA         | 70  | 47 |
| 1956 | 05 | 26 | 18 | 40 | 35 | S. SOFIA           | 65  | 47 |
| 1980 | 11 | 23 | 18 | 34 | 35 | IRPINIA-LUCANIA    | 100 | 69 |
| 1505 | 01 | 03 | 02 |    | F  | BOLOGNA            | 70  | 50 |
| 1828 | 10 | 08 |    |    | F  | FORLI`             | 65  | 47 |
| 1768 | 10 | 19 | 23 |    | 30 | S.SOFIA            | 80  | 55 |
| 1881 | 02 | 12 |    |    | 30 | RUSSI              | 65  | 47 |
| 1929 | 04 | 20 | 01 | 09 | 30 | BOLOGNESE          | 75  | 54 |
| 1951 | 05 | 15 | 22 | 54 | 30 | LODIGIANO          | 60  | 49 |
| 1952 | 07 | 04 | 20 | 35 | 30 | ROCCA SAN CASCIANO | 60  | 44 |
| 1957 | 04 | 17 | 02 | 22 | 30 | S. SOFIA           | 60  | 42 |
| 1972 | 10 | 25 | 21 | 56 | 30 | PASSO CISA         | 50  | 47 |
| 1874 | 10 | 07 |    |    | 25 | IMOLESE            | 70  | 50 |
| 1971 | 07 | 15 | 01 | 33 | 10 | PARMENSE           | 80  | 54 |
| 1904 | 02 | 25 | 18 | 47 | NF | APP. REGGIANO      | 75  | 53 |
| 1904 | 11 | 17 | 05 | 02 | NF | PISTOIESE          | 70  | 50 |
|      |    |    |    |    |    |                    |     |    |


## Storia sismica di FAENZA (RA)














|                | Disaggregazione del valore di a(g) con probabilita' di eccedenza del 10% in 50 anni<br>(Coordinate del punto lat: 44.324, lon: 11.8832, ID: 17626) |         |         |         |         |          |         |         |         |         |         |  |
|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|---------|----------|---------|---------|---------|---------|---------|--|
| Distanza in km |                                                                                                                                                    |         |         |         | N       | /agnitud | o       |         |         |         |         |  |
|                | 3.5-4.0                                                                                                                                            | 4.0-4.5 | 4.5-5.0 | 5.0-5.5 | 5.5-6.0 | 6.0-6.5  | 6.5-7.0 | 7.0-7.5 | 7.5-8.0 | 8.0-8.5 | 8.5-9.0 |  |
| 0-10           | 0.000                                                                                                                                              | 18.400  | 34.700  | 19.800  | 7.660   | 0.091    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 10-20          | 0.000                                                                                                                                              | 1.380   | 5.210   | 5.970   | 3.980   | 0.194    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 20-30          | 0.000                                                                                                                                              | 0.000   | 0.126   | 0.838   | 1.090   | 0.097    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 30-40          | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.034   | 0.242   | 0.042    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 40-50          | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.028   | 0.027    | 0.003   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 50-60          | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.001   | 0.005    | 0.002   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 60-70          | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 70-80          | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 80-90          | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 90-100         | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 100-110        | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 110-120        | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 120-130        | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 130-140        | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 140-150        | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 150-160        | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 160-170        | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 170-180        | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 180-190        | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |
| 190-200        | 0.000                                                                                                                                              | 0.000   | 0.000   | 0.000   | 0.000   | 0.000    | 0.000   | 0.000   | 0.000   | 0.000   | 0.000   |  |

| Valori medi |          |         |  |  |  |  |  |
|-------------|----------|---------|--|--|--|--|--|
| Magnitudo   | Distanza | Epsilon |  |  |  |  |  |
| 4.930       | 6.720    | 0.985   |  |  |  |  |  |

### 8.2 Liquefazione

Una sollecitazione sismica provoca una messa in accelerazione delle particelle del suolo che possono determinare liquefazione e/o modificazioni topografiche dell'area.

Ciò avviene in misura maggiore per quei terreni incoerenti poiché i granuli sottoposti a vibrazione perdono resistenza di attrito e quindi vengono favoriti fenomeni di scorrimento con assestamenti e rifluimenti, con possibili processi di liquefazione in caso di terreni saturi di acqua.

La coesione conserva invece la sua efficacia, indipendentemente dalla vibrazione; quindi i terreni coerenti presentano, praticamente, inalterata la resistenza alle azioni taglianti rapide e con essi sono più rari cedimenti delle opere per assestamenti e rifluimenti generati da azioni dinamiche quali quelle sismiche.

Per l'area in esame sono state eseguite verifiche di liquefazione con il metodo AGI (2005) e Robertson (1998), facendo riferimento a favore della sicurezza ad una magnitudo momento corrispondente a M=5.5, decisamente superiore rispetto a quella attesa sul sito per un sisma di progetto con tempi di ritorno di 475 anni, che a pari a M=4.93.

Le verifiche eseguite hanno evidenziato un indice di potenziale di liquefazione da basso a nullo. Il che esclude al possibilità che sull'area oggetto di variante si possano manifestare fenomeni di liquefazione a seguito di un sisma di progetto.

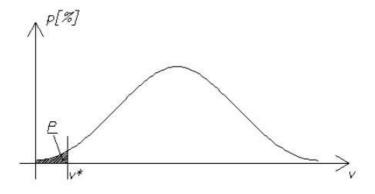
Inoltre i cedimenti post sisma, sia dovuti alla parte granulare sia ai terreni fini, risultano compatibili nei termini degli SLU con le strutture previste, essendo compresi tra circa 2 cm ed un massimo di 15 cm. Pertanto in caso di un sisma di progetto non si avrà collasso della struttura causa cedimenti del terreno

Infine si osserva che la magnitudo momento per un sisma di progetto e per il sito in esame risulta inferiore al valore di M=5 (M=4.93) limite per cui le energie sono tali da poter indurre eventuali fenomeni di liquefazione.

## 9. CONSIDERAZIONE GEOTECNICHE

## 9.1 Metodo utilizzato per la valutazione dei parametri geotecnici caratteristici

Un aspetto essenziale del metodo degli stati limite riguarda la scelta dei parametri da introdurre nel modello di calcolo. Relativamente ai calcoli geotecnici con il criterio degli stati limite si devono considerare nelle relazioni i parametri caratteristici.


In base all'EC7, al punto 2.4.5.2.2(P), il valore caratteristico di un parametro geotecnico sarà scelto come una stima cautelativa del valore di influenza all'insorgere dello stato limite.

Da ciò discende:

- *Stima cautelativa:* si tratta di una stima che deve essere a favore della sicurezza. Cioè si deve tenere conto dell'incertezza esistente in geotecnica dovuta alla notevole variabilità delle proprietà dei depositi nonché all'incertezza dovuta alle informazioni non complete generalmente a disposizione tramite prove in situ e di laboratorio;
- *Valore che influenza l'insorgere dello stato limite*: il valore caratteristico è in funzione dello stato limite considerato, ad esempio la rottura al collasso verticale della fondazione. Si osserva che se invece della rottura al collasso verticale, esaminiamo la rottura allo slittamento, il valore del parametro geotecnico sarà generalmente diverso.

L'unica metodologia delineata dall'EC7 per la definizione dei valori caratteristici è di natura statistica, anche se questa non è resa obbligatoria, cioè non deve necessariamente essere adottata dai singoli stati membri.

Nel caso specifico utilizzando il metodo statistico il valore caratteristico di un particolare parametro di calcolo è definito come quel valore al quale è associato una determinata probabilità di non superamento.



Densità di probabilità p

Osservando la sopra riportata figura si rileva che P è la probabilità di non superamento della variabile v connessa al valore v\* (valore caratteristico cercato se P=5%). v\* viene quindi calcolato imponendo che l'area P sia uguale a 5%.

In particolare in funzione del volume di terreno coinvolto nello stato limite considerato si possono presentare le seguenti situazioni:

- 1. Elevati volumi di terreno;
- 2. Piccoli volumi di terreno.

### 1. Elevati volumi di terreno

Quando la zona di influenza coinvolge elevati volumi di terreno bisogna selezionare un 5° percentile della distribuzione media.

$$x_k = \overline{x} \pm t_{n-1}^{0.95} \left( \frac{s}{\sqrt{n-1}} \right)$$

Dove:

 $x_k$  = valore caratteristico desiderato

 $\overline{x}$  = valore medio (ignoto) della popolazione, ipotizzato essere uguale al valore medio del campione

t = valore della distribuzione di student ad n-1 gradi di libertà con probabilità u=95% (ossia  $1-\alpha = 0.95$  o alternativamente,  $\alpha = 0.05$ )

s = deviazione standard del campione

n = numero di dati

#### 2. Piccoli volumi di terreno

Nel caso che la rottura sia locale, ossia interessi volumi relativamente piccoli del terreno, la formula da applicare è la seguente.

$$x_k = \overline{x} \pm z_{0.05} \bullet s \approx \overline{x} \pm 1.645 \bullet s$$

Dove:

 $x_k$  = valore caratteristico desiderato

 $\bar{x}$  = valore medio (ignoto) della popolazione, ipotizzato essere uguale al valore medio del campione

z = distribuzione normale standardizzata

s = deviazione standard del campione

#### 3. Campioni di scarsa numerosità

Per campioni di scarsa numerosità è possibile utilizzare anche la più generica equazione di Schneider, che offre la seguente formula semplificata:

$$x_k = -\frac{COV}{2}$$

Dove:

 $x_k$  = valore caratteristico desiderato

 $\overline{x}$  = valore medio (ignoto) della popolazione, ipotizzato essere uguale al valore medio del campione

COV = covarianza

Diversi autori propongono valori di covarianza per i vari parametri geotecnici

Shneider (1997) Angolo di attrito = 10% Coesione = 40% Modulo di comprimibilità = 40%

Phoon et al. 1995 Peso di volume naturale = 7% Valore di qc (MPa) per sabbie = 38% Valore di qc (MPa) per argille limose = 27% Valore di qT (MPa) per argille = 8% Densità relativa (%) per sabbie = 10-40%

## 9.2 Valutazione dei parametri geotecnici caratteristici

Nel caso in esame, in base alla tipologia di edifici previsti nella lottizzazione, si ipotizza: Fondazioni a plinti con larghezza di circa 3 metri poste alla profondità di circa 1.5 metri;

Si evidenzia che in base alle indagini geognostiche eseguite, per le verifiche delle resistenze, si può schematizzare il sottosuolo considerando comportamento coesivo, scegliendo parametri in condizioni non drenate.

Nel caso specifico si è fatto riferimento alle quattro prove eseguite sul sito oggetto di variante al PRG.

|                                                               |                 |                                                   | Condizioni non drenate                            |                 |                        |  |  |  |  |
|---------------------------------------------------------------|-----------------|---------------------------------------------------|---------------------------------------------------|-----------------|------------------------|--|--|--|--|
| Parametro per fondazioni superficiali di<br>larghezza B = 3 m |                 | Valore<br>Caratteristico<br>per Elevati<br>Volumi | Valore<br>Caratteristico<br>per Piccoli<br>Volumi | Valore<br>Media | Deviazione<br>Standard |  |  |  |  |
| ANGOLO DI ATTRITTO                                            | $\phi$          | n/a                                               | n/a                                               | n/a             | n/a                    |  |  |  |  |
| COESIONE DRENATA                                              | C'              | n/a                                               | n/a                                               | n/a             | n/a                    |  |  |  |  |
| COESIONE NON DRENATA                                          | Си              | 0.76 daN/cmq                                      | 0.56 daN/cmq                                      | 0.76 daN/cmq    | 0.12 daN/cmq           |  |  |  |  |
| ANGOLO DI ATTRITTO A VOLUME COSTANTE                          | $\phi$ c        | n/a                                               | n/a                                               | n/a             | n/a                    |  |  |  |  |
| COEFFICIENTE DI POISSON                                       | Р               |                                                   |                                                   | 0.36            |                        |  |  |  |  |
| MODULO ELASTICO                                               | Ε               | 201 daN/cmq                                       | 118 daN/cmq                                       | 205 daN/cmq     | 53 daN/cmq             |  |  |  |  |
| Ki DI WINKLER VERTICALE PER PIASTRA 30 CM                     | Ki              |                                                   |                                                   | 2.64 daN/cmc    | ·                      |  |  |  |  |
| Kw DI WINKLER VERTICALE PERFONDAZIONE B = 3 m                 | Kw              |                                                   |                                                   | 0.79 daN/cmc    |                        |  |  |  |  |
| DENSITA' DEL TERRENO                                          | $ ho$ $\square$ | 1774 daN/mc                                       | 1665 daN/mc                                       | 1779 daN/mc     | 69 daN/mc              |  |  |  |  |
| DENSITA' SECCO DEL TERRENO                                    | ho s            | 1374 daN/mc                                       | 1265 daN/mc                                       | 1379 daN/mc     | 69 daN/mc              |  |  |  |  |

|                                                               |                 | Condizioni drenate                                |                                                   |                 |                        |  |  |
|---------------------------------------------------------------|-----------------|---------------------------------------------------|---------------------------------------------------|-----------------|------------------------|--|--|
| Parametro per fondazioni superficiali di<br>larghezza B = 3 m |                 | Valore<br>Caratteristico<br>per Elevati<br>Volumi | Valore<br>Caratteristico<br>per Piccoli<br>Volumi | Valore<br>Media | Deviazione<br>Standard |  |  |
| ANGOLO DI ATTRITTO                                            | $\phi$          | 22.6 °                                            | 19.5 °                                            | 22.7 °          | 2 °                    |  |  |
| COESIONE DRENATA                                              | C'              | 0.43 daN/cmq                                      | 0.29 daN/cmq                                      | 0.44 daN/cmq    | 0.09 daN/cmq           |  |  |
| COESIONE NON DRENATA                                          | Си              | n/a                                               | n/a                                               | n/a             | n/a                    |  |  |
| ANGOLO DI ATTRITTO A VOLUME COSTANTE                          | $\phi$ cv       | n/a                                               | n/a                                               | n/a             | n/a                    |  |  |
| COEFFICIENTE DI POISSON                                       | P               |                                                   |                                                   | 0.37            |                        |  |  |
| MODULO ELASTICO                                               | Ε               | 204 daN/cmq                                       | 122 daN/cmq                                       | 208 daN/cmq     | 52 daN/cmq             |  |  |
| Ki DI WINKLER VERTICALE PER PIASTRA 30 CM                     | Ki              |                                                   |                                                   | 2.65 daN/cmc    |                        |  |  |
| Kw DI WINKLER VERTICALE PERFONDAZIONE B = 3 m                 | Kw              |                                                   |                                                   | 0.8 daN/cmc     |                        |  |  |
| DENSITA' DEL TERRENO                                          | $ ho$ $\square$ | 1777 daN/mc                                       | 1672 daN/mc                                       | 1781 daN/mc     | 67 daN/mc              |  |  |
| DENSITA' SECCO DEL TERRENO                                    | ho s            | 1377 daN/mc                                       | 1272 daN/mc                                       | 1381 daN/mc     | 67 daN/mc              |  |  |

Tali valori caratteristici della coesione non drenata potranno essere applicati in prima approssimazione per la valutazione delle resistenze del terreno di fondazione ai carichi verticali agli

SLU, per le due tipologie di fondazione ipotizzate, una volta note le caratteristiche dello specifico edificio in progetto.

Più precise valutazioni geotecniche dovranno essere eseguite in fase di definizione dei progetti definitivi ed esecutivi sulla base delle indagini specifiche, eventualmente da integrarsi se del caso con quelle eseguite per questa relazione, ed alle caratteristiche strutturali dell' opera in progetto.

## 9.1.2 Parametri geotecnici caratteristici delle unità litostratigrafiche del sito indagato

Si valutano i parametri geotecnici caratteristici delle varie unità litostratigrafiche.

I parametri rappresentano una stima cautelativa rispetto a quanto emerso dal confronto tra le varie prove penetrometriche eseguite nell'area di interesse.

Si riportano anche i valori caratteristici per la prova n. 1, fino alla massima profondità indagata di -23.5 m dal piano di campagna attuale.

| ANGOLO DI ATTRITO ANGOLO DI ATTRITO A VOLUME COSTANTE DENSITA' RELATIVA COESIONE DRENATA COEFICIENTE DI POISSON MODULO ELASTICO MODULO EDOMETRICO Ki di Winkler |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### VALORI CARATTERISTICI PER PICCOLI VOLUMI

| UNITA'     | CPT <sub>1</sub> |       | CPT   | CPT <sub>2</sub> |       | 3     | CPT 4 |       |  |
|------------|------------------|-------|-------|------------------|-------|-------|-------|-------|--|
|            |                  |       |       |                  |       |       |       |       |  |
| GEOTECNICA | DA               | A     | DA    | Α                | DA    | A     | DA    | Α     |  |
| Α          | 0.00             | 1.00  | 0.00  | 1.00             | 0.00  | 1.00  | 0.00  | 1.00  |  |
| В          | 1.00             | 5.00  | 1.00  | 5.00             | 1.00  | 5.00  | 1.00  | 5.00  |  |
| С          | 5.00             | 8.00  | 5.00  | 8.00             | 5.00  | 8.00  | 5.00  | 8.00  |  |
| D          | 8.00             | 13.00 | 8.00  | 12.00            | 8.00  | 12.00 | 8.00  | 12.00 |  |
| E          | 13.00            | 16.00 | 12.00 | 16.00            | 12.00 | 16.00 | 12.00 | 16.00 |  |
| F          | 16.00            | 19.00 | 16.00 | 19.00            | 16.00 | 19.00 | 16.00 | 19.00 |  |

| Ic      | LITOTIPO PREVALENTE           |
|---------|-------------------------------|
| MEDIANA | ROBERTSON 1990                |
|         | limo argilloso-argilla limosa |
|         | limo argilloso-argilla limosa |
|         | limo argilloso-argilla limosa |
| 2.81    | limo argilloso-argilla limosa |
| 2.76    | limo argilloso-argilla limosa |
| 2.94    | limo argilloso-argilla limosa |

|   | VALOTII GATIAT TETIIOTION ETT 1000ET VOEGIIT |           |    |         |         |      |        |         |        |        |        |       |
|---|----------------------------------------------|-----------|----|---------|---------|------|--------|---------|--------|--------|--------|-------|
|   | φ                                            | $\phi$ cv | Dr | C'      | Си      | Р    | Ε      | М       | Ki     | Kh     | ρ      | hos   |
|   | 0                                            | 0         | %  | daN/cmq | daN/cmq |      | kg/cmq | daN/cmq | kg/cmc | kg/cmc | kg/cmc | kg/mc |
| 1 | 18.1                                         |           |    | 0.50    | 0.65    | 0.21 | 161    | 54      | 2.28   | 0.009  | 1777   | 1377  |
|   | 20.1                                         |           |    | 0.30    | 0.56    | 0.23 | 127    | 42      | 1.95   | 0.008  | 1677   | 1277  |
|   | 19.4                                         |           |    | 0.19    | 0.71    | 0.40 | 171    | 57      | 2.48   | 0.010  | 1729   | 1329  |
|   | 23.3                                         |           |    | 0.00    | 0.72    | 0.40 | 134    | 45      | 2.52   | 0.010  | 1679   | 1279  |
|   | 21.3                                         |           |    | 0.00    | 0.82    | 0.35 | 124    | 22      | 2.14   | 0.009  | 1687   | 1287  |
| ] | 23.2                                         |           |    | 0.00    | 0.75    | 0.40 | 122    | 41      | 2.61   | 0.010  | 1651   | 1251  |
|   | -                                            |           |    |         |         |      |        |         |        |        |        |       |

| UNITA'     | ITA' CPT 1 |       | CPT   | 2     | CPT   | 3     | CPT 4 |       |  |
|------------|------------|-------|-------|-------|-------|-------|-------|-------|--|
| GEOTECNICA | DA         | A     | DA    | A     | DA    | A     | DA    | A     |  |
| Α          | 0.00       | 1.00  | 0.00  | 1.00  |       | 1.00  |       | 1.00  |  |
| В          | 1.00       | 5.00  | 1.00  | 5.00  | 1.00  | 5.00  | 1.00  | 5.00  |  |
| С          | 5.00       | 8.00  | 5.00  | 8.00  | 5.00  | 8.00  | 5.00  | 8.00  |  |
| D          | 8.00       | 13.00 | 8.00  | 12.00 | 8.00  | 12.00 | 8.00  | 12.00 |  |
| E          | 13.00      | 16.00 | 12.00 | 16.00 | 12.00 | 16.00 | 12.00 | 16.00 |  |
| F          | 16.00      | 19.00 | 16.00 | 19.00 | 16.00 | 19.00 | 16.00 | 19.00 |  |

| lc      | LITOTIPO PREVALENTE           |
|---------|-------------------------------|
| MEDIANA | ROBERTSON 1990                |
| 2.85    | limo argilloso-argilla limosa |
| 2.85    | limo argilloso-argilla limosa |
| 2.89    | limo argilloso-argilla limosa |
| 2.81    | limo argilloso-argilla limosa |
| 2.76    | limo argilloso-argilla limosa |
| 2.94    | limo argilloso-argilla limosa |

|     | VALORI CARATTERISTICI PER GRANDI VOLUMI |           |    |         |         |      |        |         |        |        |        |       |  |  |  |
|-----|-----------------------------------------|-----------|----|---------|---------|------|--------|---------|--------|--------|--------|-------|--|--|--|
|     | φ                                       | $\phi$ cv | Dr | C'      | Си      | Р    | Ε      | М       | Ki     | Kh     | ρ      | hos   |  |  |  |
|     | 0                                       | 0         | %  | daN/cmq | daN/cmq |      | kg/cmq | daN/cmq | kg/cmc | kg/cmc | kg/cmc | kg/mc |  |  |  |
| 7 / | 20.2                                    |           | 1  | 0.50    | 0.86    | 0.23 | 244    | 81      | 3.00   | 0.012  | 1856   | 1456  |  |  |  |
| 7 / | 22.3                                    |           |    | 0.44    | 0.76    | 0.34 | 209    | 70      | 2.66   | 0.011  | 1784   | 1384  |  |  |  |
| ן ד | 21.8                                    |           |    | 0.40    | 0.86    | 0.40 | 243    | 81      | 3.01   | 0.012  | 1821   | 1421  |  |  |  |
| 7 / | 25.1                                    |           |    | 0.11    | 0.90    | 0.40 | 231    | 77      | 3.16   | 0.013  | 1755   | 1355  |  |  |  |
| ] [ | 27.2                                    |           |    | 0.00    | 0.97    | 0.38 | 279    | 100     | 3.15   | 0.013  | 1769   | 1369  |  |  |  |
| ] [ | 25.1                                    |           |    | 0.00    | 0.89    | 0.40 | 220    | 73      | 3.10   | 0.012  | 1734   | 1334  |  |  |  |

| UNITA'     | CPT 1 |       | CPT 2 |       | СРТ   | 3     | CPT 4 |       |  |
|------------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| GEOTECNICA | DA    | A     | DA    | A     | DA    | A     | DA    | A     |  |
| Α          | 0.00  | 1.00  | 0.00  | 1.00  |       | 1.00  |       | 1.00  |  |
| В          | 1.00  | 5.00  | 1.00  | 5.00  | 1.00  | 5.00  | 1.00  | 5.00  |  |
| С          | 5.00  | 8.00  | 5.00  | 8.00  | 5.00  | 8.00  | 5.00  | 8.00  |  |
| D          | 8.00  | 13.00 | 8.00  | 12.00 | 8.00  | 12.00 | 8.00  | 12.00 |  |
| E          | 13.00 | 16.00 | 12.00 | 16.00 | 12.00 | 16.00 | 12.00 | 16.00 |  |
| F          | 16.00 | 19.00 | 16.00 | 19.00 | 16.00 | 19.00 | 16.00 | 19.00 |  |

| Ic   | LITOTIPO PREVALENTE           |
|------|-------------------------------|
|      | ROBERTSON 1990                |
|      | limo argilloso-argilla limosa |
| 2.85 | limo argilloso-argilla limosa |
|      | limo argilloso-argilla limosa |
| 2.81 | limo argilloso-argilla limosa |
| 2.76 | limo argilloso-argilla limosa |
| 2.94 | limo argilloso-argilla limosa |

|   | VALC   | ORI M     | EDIE |         |         |      |        |         |        |        |        |       |
|---|--------|-----------|------|---------|---------|------|--------|---------|--------|--------|--------|-------|
|   | $\phi$ | $\phi$ cv | Dr   | C'      | Cu      | Р    | Ε      | М       | Ki     | Kh     | ρ      | hos   |
|   | 0      | 0         | %    | daN/cmq | daN/cmq |      | kg/cmq | daN/cmq | kg/cmc | kg/cmc | kg/cmc | kg/mc |
| 1 | 20.5   |           |      | 0.50    | 0.88    | 0.24 | 254    | 85      | 3.09   | 0.012  | 1866   | 1466  |
| 7 | 22.4   |           |      | 0.45    | 0.77    | 0.35 | 214    | 71      | 2.70   | 0.011  | 1789   | 1389  |
|   | 21.9   |           |      | 0.42    | 0.87    | 0.40 | 249    | 83      | 3.04   | 0.012  | 1827   | 1427  |
|   | 25.2   |           |      | 0.13    | 0.91    | 0.40 | 237    | 79      | 3.20   | 0.013  | 1760   | 1360  |
|   | 27.7   |           |      | 0.00    | 0.98    | 0.39 | 290    | 106     | 3.23   | 0.013  | 1775   | 1375  |
|   | 25.2   |           |      | 0.00    | 0.89    | 0.40 | 226    | 75      | 3.13   | 0.013  | 1739   | 1339  |

#### VALORI CARATTERISTICI PER PICCOLI VOLUMI

|            |       |       |          |                               |      | 0,        | 7/1/7/ |         |
|------------|-------|-------|----------|-------------------------------|------|-----------|--------|---------|
| UNITA'     | CPT 1 |       | Ic       | LITOTIPO PREVALENTE           | φ    | $\phi$ cv | Dr     | C'      |
| GEOTECNICA | DA    | A     | M EDIANA | ROBERTSON 1990                | 0    | 0         | %      | daN/cmq |
| Α          | 0.00  | 1.00  | 2.88     | limo argilloso-argilla limosa | 19.1 |           |        | 0.5     |
| В          | 1.00  | 5.00  | 2.86     | limo argilloso-argilla limosa | 20.0 |           |        | 0.1     |
| С          | 5.00  | 10.50 | 2.83     | limo argilloso-argilla limosa | 21.0 |           |        | 0.0     |
| D          | 10.50 | 13.00 | 2.63     | limo argilloso-argilla limosa | 25.1 |           |        | 0.0     |
| E          | 13.00 | 16.00 | 2.06     | sabbia limosa-limo sabbioso   | 32.6 | 30.2      | 34.5   |         |
| F          | 16.00 | 19.00 | 2.98     | argilla-argilla limosa        | 23.2 |           |        | 0.0     |
| G          | 19.00 | 20.80 | 2.54     | sabbia limosa-limo sabbioso   | 25.2 | 23.9      | 22.5   |         |
| Н          | 20.80 | 22.00 | 3.10     | argilla-argilla limosa        | 21.3 |           |        | 0.0     |
| I          | 22.00 | 23.50 | 2.13     | sabbia limosa-limo sabbioso   | 29.9 | 26.6      | 42.5   |         |
|            |       |       |          |                               |      |           |        |         |
|            |       |       |          |                               |      |           |        |         |

|   | VAL  |           | ADAI | IENI    | HICH    | 'En F | 1CCO   | LIVO    | LUWI   |        |        |       |
|---|------|-----------|------|---------|---------|-------|--------|---------|--------|--------|--------|-------|
|   | φ    | $\phi$ cv | Dr   | C'      | Си      | Р     | Ε      | М       | Ki     | Kh     | ρ      | hos   |
|   | 0    | 0         | %    | daN/cmq | daN/cmq |       | kg/cmq | daN/cmq | kg/cmc | kg/cmc | kg/cmc | kg/mc |
|   | 19.1 |           |      | 0.50    | 0.68    | 0.22  | 167    | 56      | 2.39   | 0.010  | 1751   | 1351  |
|   | 20.0 |           |      | 0.16    | 0.43    | 0.24  | 72     | 24      | 1.51   | 0.006  | 1588   | 1188  |
|   | 21.0 |           |      | 0.00    | 0.70    | 0.40  | 135    | 45      | 2.43   | 0.010  | 1667   | 1267  |
|   | 25.1 |           |      | 0.00    | 1.03    | 0.25  | 137    | 51      | -0.14  | -0.001 | 1738   | 1338  |
| 0 | 32.6 | 30.2      | 34.5 |         |         | 0.33  | 331    | 118     | 0.92   | 0.031  | 1744   | 1344  |
|   | 23.2 |           |      | 0.00    | 0.83    | 0.40  | 219    | 73      | 2.92   | 0.012  | 1726   | 1326  |
| ) | 25.2 | 23.9      | 22.5 |         |         | 0.23  | -5     | 185     | -1.18  | -0.039 | 1902   | 1502  |
|   | 21.3 |           |      | 0.00    | 0.92    | 0.40  | 274    | 91      | 3.23   | 0.013  | 1821   | 1421  |
| 0 | 29.9 | 26.6      | 42.5 |         |         | 0.32  | 356    | 235     | 1.95   | 0.065  | 1908   | 1508  |
|   |      |           |      |         |         |       |        |         |        |        |        |       |
|   |      |           |      |         |         |       |        |         |        |        |        |       |

#### VALORI CARATTERISTICI PER GRANDI VOLUMI

| UNITA'     | СРТ   | 1     | Ī | Ic       | LITOTIPO PREVALENTE           |   |
|------------|-------|-------|---|----------|-------------------------------|---|
| GEOTECNICA | DA    | A     |   | M EDIANA | ROBERTSON 1990                |   |
| Α          | 0.00  | 1.00  | ĺ | 2.88     | limo argilloso-argilla limosa | ľ |
| В          | 1.00  | 5.00  | ľ | 2.86     | limo argilloso-argilla limosa | ľ |
| С          | 5.00  | 10.50 | ĺ | 2.83     | limo argilloso-argilla limosa | ľ |
| D          | 10.50 | 13.00 | ĺ | 2.63     | limo argilloso-argilla limosa | ľ |
| E          | 13.00 | 16.00 | ĺ | 2.06     | sabbia limosa-limo sabbioso   | ľ |
| F          | 16.00 | 19.00 | ľ | 2.98     | argilla-argilla limosa        | ľ |
| G          | 19.00 | 20.80 | ľ | 2.54     | sabbia limosa-limo sabbioso   | ľ |
| Н          | 20.80 | 22.00 | Ī | 3.10     | argilla-argilla limosa        | ľ |
| ı          | 22.00 | 23.50 | ĺ | 2.13     | sabbia limosa-limo sabbioso   | ľ |
|            |       |       | l |          |                               | ľ |
|            |       |       | l |          |                               | ľ |

| _ | $\overline{}$ |           |      |         |         |      |        |         |        |        |        |       |
|---|---------------|-----------|------|---------|---------|------|--------|---------|--------|--------|--------|-------|
|   | $\phi$        | $\phi$ cv | Dr   | C'      | Cu      | Р    | E      | М       | Ki     | Kh     | ρ      | hos   |
|   | 0             | 0         | %    | daN/cmq | daN/cmq |      | kg/cmq | daN/cmq | kg/cmc | kg/cmc | kg/cmc | kg/mc |
|   | 20.6          |           |      | 0.50    | 0.75    | 0.23 | 199    | 66      | 2.63   | 0.011  | 1802   | 1402  |
|   | 22.8          |           |      | 0.34    | 0.64    | 0.35 | 160    | 53      | 2.26   | 0.009  | 1722   | 1322  |
|   | 23.7          |           |      | 0.23    | 0.84    | 0.40 | 221    | 74      | 2.95   | 0.012  | 1763   | 1363  |
|   | 26.2          |           |      | 0.04    | 1.08    | 0.32 | 211    | 98      | 1.69   | 0.007  | 1796   | 1396  |
|   | 34.3          | 30.9      | 43.0 |         |         | 0.34 | 422    | 177     | 2.25   | 0.075  | 1816   | 1416  |
|   | 24.3          |           |      | 0.00    | 0.89    | 0.40 | 248    | 83      | 3.11   | 0.012  | 1761   | 1361  |
|   | 25.5          | 24.1      | 24.9 |         |         | 0.28 | 181    | 208     | 0.71   | 0.024  | 1918   | 1518  |
|   | 22.0          |           |      | 0.00    | 1.00    | 0.40 | 310    | 103     | 3.51   | 0.014  | 1850   | 1450  |
|   | 31.2          | 27.3      | 46.8 |         |         | 0.33 | 415    | 265     | 2.71   | 0.090  | 1932   | 1532  |
|   |               |           |      |         |         |      |        |         |        |        |        |       |
|   |               |           |      |         |         |      |        |         |        |        |        |       |

#### VAI ORI MEDIE

| UNITA'     | CPT   | 1     | Ic       | LITOTIPO PREVALENTE           | φ    | $\phi$ cv | Dr   |
|------------|-------|-------|----------|-------------------------------|------|-----------|------|
| GEOTECNICA | DA    | A     | M EDIANA | ROBERTSON 1990                | 0    | 0         | %    |
| Α          | 0.00  | 1.00  | 2.88     | limo argilloso-argilla limosa | 21.2 |           |      |
| В          | 1.00  | 5.00  | 2.86     | limo argilloso-argilla limosa | 23.1 |           |      |
| С          | 5.00  | 10.50 | 2.83     | limo argilloso-argilla limosa | 24.0 |           |      |
| D          | 10.50 | 13.00 | 2.63     | limo argilloso-argilla limosa | 26.7 |           |      |
| E          | 13.00 | 16.00 | 2.06     | sabbia limosa-limo sabbioso   | 34.6 | 31.0      | 44.6 |
| F          | 16.00 | 19.00 | 2.98     | argilla-argilla limosa        | 24.4 |           |      |
| G          | 19.00 | 20.80 | 2.54     | sabbia limosa-limo sabbioso   | 25.9 | 24.0      | 30.4 |
| Н          | 20.80 | 22.00 | 3.10     | argilla-argilla limosa        | 22.2 |           | _    |
|            | 22.00 | 23.50 | 2.13     | sabbia limosa-limo sabbioso   | 31.8 | 27.6      | 48.9 |
|            |       |       |          |                               |      |           |      |

|   | VAL  | )RIM      | EDIE |         |         |      |        |         |        |        |        |       |
|---|------|-----------|------|---------|---------|------|--------|---------|--------|--------|--------|-------|
|   | φ    | $\phi$ cv | Dr   | C'      | Си      | Р    | Ε      | М       | Ki     | Kh     | ρ      | ρs    |
|   | 0    | 0         | %    | daN/cmq | daN/cmq |      | kg/cmq | daN/cmq | kg/cmc | kg/cmc | kg/cmc | kg/mc |
| 1 | 21.2 |           |      | 0.50    | 0.78    | 0.23 | 213    | 71      | 2.72   | 0.011  | 1823   | 1423  |
| 1 | 23.1 |           |      | 0.36    | 0.67    | 0.36 | 170    | 57      | 2.34   | 0.009  | 1737   | 1337  |
| T | 24.0 |           |      | 0.26    | 0.86    | 0.40 | 231    | 77      | 3.01   | 0.012  | 1775   | 1375  |
| 1 | 26.7 |           |      | 0.11    | 1.12    | 0.35 | 244    | 119     | 2.51   | 0.010  | 1822   | 1422  |
| 1 | 34.6 | 31.0      | 44.6 |         |         | 0.34 | 438    | 187     | 2.49   | 0.083  | 1829   | 1429  |
| 1 | 24.4 |           |      | 0.00    | 0.90    | 0.40 | 251    | 84      | 3.14   | 0.013  | 1766   | 1366  |
| 1 | 25.9 | 24.0      | 30.4 |         |         | 0.32 | 363    | 230     | 2.57   | 0.086  | 1933   | 1533  |
|   | 22.2 |           |      | 0.00    | 1.02    | 0.40 | 319    | 106     | 3.58   | 0.014  | 1857   | 1457  |
|   | 31.8 | 27.6      | 48.9 |         |         | 0.33 | 443    | 279     | 3.07   | 0.102  | 1943   | 1543  |
| ] |      |           |      |         |         |      |        |         |        |        |        |       |

Valori geotecnici caratteristici solo della prova n. 1 spinta fino a -23.5 m dal piano di campagna attuale.

## 9.3 Valutazione degli Stati Limite Ultimi (SLU)

In base alle NTC 2008 le valutazioni geotecniche delle SLU non possono più essere esemplificative, come per le precedenti normative.

Infatti per una corretta valutazione delle resistenze devono essere note le caratteristiche della struttura: massa, altezza, tipologia strutturale, duttilità etc.

Eseguire valutazioni di resistenza, ad esempio ai carichi verticali, senza sufficienti conoscenze del progetto, potrebbe risultare fuorviante e determinare considerazioni non appropriate alla situazione geotecnica in sito.

Pertanto, in attesa di specifiche istruzioni da parte delle amministrazioni preposte, in questa fase di progettazione della lottizzazione, cercando la coerenza con le relazioni geologiche e geotecniche ante NTC 2008, si procede alla valutazione del collasso al carico limite (N<sub>lim</sub>) in condizioni *esclusivamente statiche*, senza tenere conto delle azioni del sisma.

Nel caso specifico si ipotizza una fondazione a plinto con larghezza di 3 metri, con incastro terrenofondazione di 1 metro.

Per i parametri geotecnici, in condizioni non drenate, si utilizzano quelli caratteristici precedentemente ricavati.

## Utilizzando i seguenti dati, ipotesi fondazione a plinti (esclusivamente condizioni statiche)

#### VALUTAZIONE DEL CARICO DI ROTTURA IN TERRENO OMOGENEO

```
Per la verifica del carico di rottura (Qr) si applica la formula di Terzaghi:
      Qr = Nc * c * sc * sk + Nq * g1' * D + 0.5 * Ng * g2' * B * sg =
                                                                                   46.0 ton/ma
in cui: Nc
               fattore di capacita portante dipendente dal phi
                                                                                   5.14 (Terzaghi, Prandtl & Vesic) Nc = (Nq -1) * cotan(phi)
      Nq
               fattore di capacita portante dipendente dal phi
                                                                                   1.00 (Terzaghi, Prandtl & Vesic) Nq = tan^2(45 + phi/2) * e^(pi * tan(phi))
      Ng
               fattore di capacita portante dipendente dal phi
                                                                                    0.00 (Terzaghi, Prandtl & Vesic) Ng = 2 * (Nq + 1) * tan(phi)
                                                                                   0.00^{\circ} * sk = 0^{\circ}
               (fattori calcolati assumendo un angolo di attrito interno effettivo phi
               ed applicando una riduzione per phi per l'addensamento del terreno (sk)
      sk
               coefficiente di riduzione per addensamento basso
                                                                                    1.00 ) (1.0 per terreni molto addensati; 0.67 per terreni poco addensati)
                                                                                   7.00 ton/ma
               peso unitario efficace del terreno sopra la fondazione
                                                                                    1.90 ton/mc
               peso unitario efficace del terreno sotto la fondazione
                                                                                   1.00 ton/mc
      g2'
               profondita di posa della fondazione
                                                                                    1.50 m
               larghezza della fondazione
                                                                                   3.00 m
               lunghezza della fondazione
                                                                                   3.00 m
      1
               coefficiente di forma della fondazione
                                                                                   1.20 (1.0 per nastriformi; 1.2 per quadrate e circolari)
               coefficiente di forma della fondazione
                                                                                   0.80 (1.0 per nastriformi; 0.8 per quadrate; 0.6 per circolari)
Applicando un fattore di sicurezza uguale a tre da applicare al carico di rottura (Qr).
come prescritto del D.M.LL.PP. dell' 11-03-1988 si ottiene un carico ammissibile di:
                                                                                                             2.00 daN/cmg
      Qa = Qr / 2.3
                                                                                   20.0 \text{ ton/mg} =
                                                                                                              200 kPa
```

#### Risultati

Risolvendo il metodo sopra enunciato sulla base dei dati sopra elencati si può affermare che il carico limite di una fondazione siffatta nelle condizioni sopra descritte è pari a:

 $N_{lim} = 460 [kPa]$ Rd = 200 [kPa]

# 9.4 Valutazione dello Stato Limite di Esercizio (SLE) – deformazioni irreversibili

Al fine di valutare in prima analisi l'entità delle deformazioni irreversibili delle prevedibili strutture della lottizzazione, si esegue la verifica dei cedimenti ipotizzando una fondazione a plinti di 3x3 m posta a 100 cm dal piano di campagna e con una pressione diffusamente distribuita sul terreno di Qam = 100 kPa

Per la distribuzione dei carichi in profondità si è fatto uso del metodo di Steinbrenner con soluzione di Ohde, considerando una superficie di carico priva di rigidezza e uniformemente caricata. Mentre i relativi assestamenti del terreno sono stati verificati applicando la teoria dei cedimenti a tempo infinito e all'80% del costipamento dei pori.

```
Per la \Sigma s = \Sigma(\Delta h \text{ mv } \Delta p) con s= entità del cedimento (cm) \Delta h = spessore del terreno sottoposto al calcolo (cm) \Delta p= carico agente sullo spessore considerato (Kg/cmq) mv= coefficiente di compressibilità volumetrica (cmq/Kg)
```

si ottengono i risultati riportati nelle tabelle riportate negli allegati: i cedimenti ottenuti dai calcoli risultano compatibili con le prevedibili tipologie di fabbricati della lottizzazione in progetto.

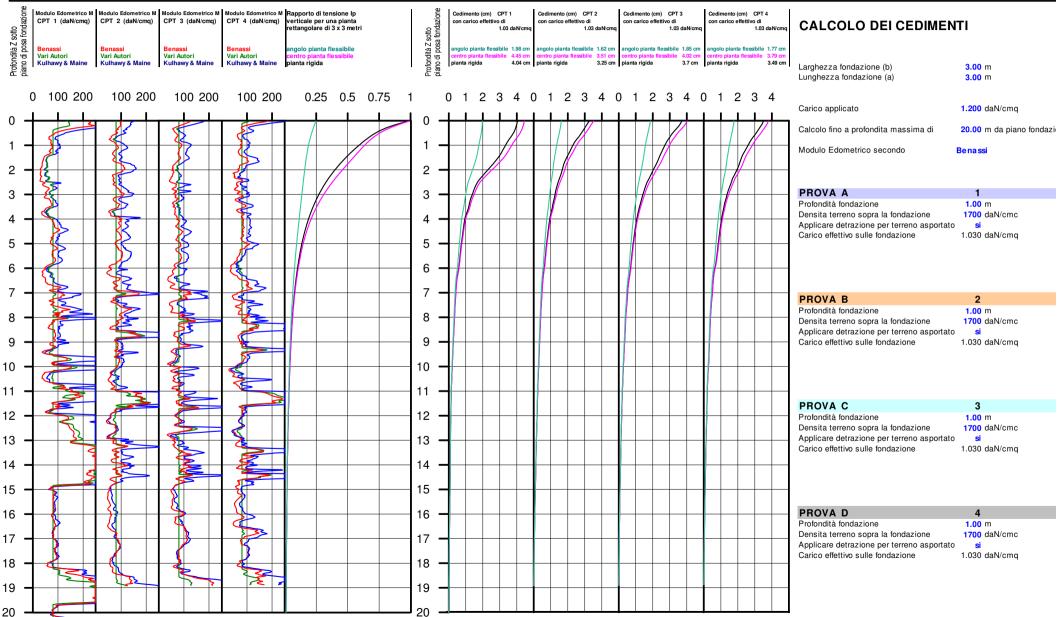
Considerazioni più precise potranno in ogni caso essere eseguite alla luce di indagini specifiche sul sito di progetto ed in base alla effettiva tipologia di fabbricato in progetto.

Comune Faenza

Via Monte Sant'Andrea Localita' Granarolo Faentina Committente Granfrutta Zani 24/01/2012 Data

## **VALUTAZIONE DEI CEDIMENTI**

Modulo Edometrico M secondo Benassi




Via Matteotti 50

48012 Bagnacavallo (RA)

www.geo55.com





#### RIEPILOGO CEDIMENTI (calcolati con M secondo Benassi)

| Comune                  | Faenza             |
|-------------------------|--------------------|
| Localita'               | Granarolo Faentina |
| Committente             | Granfrutta Zani    |
| Fondazione rettangolare | 3 X 3 m            |
| Piano di posa           | 1 1 m              |
| Carico applicato        | 1.2 daN/cm2        |

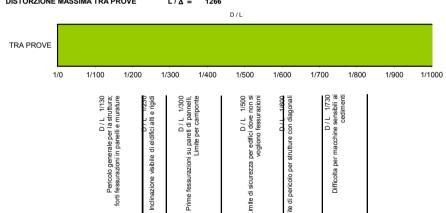
| Distanza           |        | spigolo | spigolo |        |
|--------------------|--------|---------|---------|--------|
| fondazione tra (m) | angolo | corto   | lungo   | centro |
| angolo             |        | 1.50    | 1.50    | 2.12   |
| spigolo corto      | 1.50   |         | 2.12    | 1.50   |
| spigolo lungo      | 1.50   | 2.12    |         | 1.50   |
| centro             | 2.12   | 1.50    | 1.50    |        |
|                    |        |         |         |        |

| distanze ipotizzate della variabilità litogeotecnica |            |            |            |            |  |
|------------------------------------------------------|------------|------------|------------|------------|--|
| Distanze tra le prove (m)                            | Prova<br>1 | Prova<br>2 | Prova<br>3 | Prova<br>4 |  |
| Prova 1                                              |            | 10         | 20         | 30         |  |
| Prova 2                                              | 10         |            | 20         | 30         |  |
| Prova 3                                              | 20         | 20         |            | 30         |  |
| Prova 4                                              | 30         | 30         | 30         |            |  |
|                                                      |            |            |            |            |  |



S.G.T. sas. di Van Zutphen Albert & C. Via Matteotti 50 48012 Bagnacavallo (RA) www.geo55.com

#### CEDIMENTI PER CAUSA DI DIFFERENZE TRA LE PROVE


| Pianta rettangolare rigida | Cedimenti cumulativo cm<br>secondo Benassi |
|----------------------------|--------------------------------------------|
| Prova 1                    | 4.05                                       |
| Prova 2                    | 3.26                                       |
| Prova 3                    | 3.71                                       |
| Prova 4                    | 3.50                                       |

| Cedimenti<br>differenziali (cm) | Prova<br>1 | Prova<br>2 | Prova<br>3 | Prova<br>4 |
|---------------------------------|------------|------------|------------|------------|
| Prova 1                         |            | 0.790      | 0.338      | 0.549      |
| Prova 2                         | 0.790      |            | -0.451     | -0.241     |
| Prova 3                         | 0.338      | -0.451     |            | 0.211      |
| Prova 4                         | 0.549      | -0.241     | 0.211      |            |

| 1 | Cedimenti<br>differenziali (%) | Prova<br>1 | Prova<br>2 | Prova<br>3 | Prova<br>4 |
|---|--------------------------------|------------|------------|------------|------------|
|   | Prova 1                        |            | 0.079      | 0.017      | 0.018      |
|   | Prova 2                        | 0.079      |            | 0.023      | 0.008      |
|   | Prova 3                        | 0.017      | 0.023      |            | 0.007      |
|   | Prova 4                        | 0.018      | 0.008      | 0.007      |            |

| Cedimenti differenziali massimi |      |      |  |  |  |
|---------------------------------|------|------|--|--|--|
| cm                              | %    | L/A  |  |  |  |
| 0.79                            | 0.08 | 1266 |  |  |  |

## LIMITE DELLE DISTORSIONI ANGOLARI (BJERRUM 1963) DISTORZIONE MASSIMA TRA PROVE $L/\Delta = 1266$



#### LIMITI DEI CEDIMENTI E DISTORSIONI ANGOLARI AMMISSIBILE (WILUN & STARZEWSKI 1975)

| Classe edificio e<br>struttura | Tipo di edificio e strutture                                                                                                                                                                                                                                                                                                                                            | massimo<br>totale<br>ammissibile<br>(cm) | Deformazione angolare massima ammissibile calcolata per tre punti allineati e connessi della fondazioni di una struttura                                                                                                                                   |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                              | Strutture massicce di notevole rigidezza rispetto agli assi orizzontale,<br>con fondazioni massicce in calcestruzzo non armato o fondazioni<br>cellulari o graticci rigidi in calcestruzzo armato.                                                                                                                                                                      | 15 - 20                                  | Le differenze massimi tra i cedimenti dei vari punti della struttura<br>non dovrebbero causare inclinazioni della fondazioni maggiori di<br>1/100 - 1/200 del rapporto tra la dimensione minore in pianta della<br>fondazione e l'altezza della struttura. |
| 2                              | strutture isostatiche con giunti e cerniere e strutture in legno.                                                                                                                                                                                                                                                                                                       | 10 - 15                                  | 1/100 - 1/200                                                                                                                                                                                                                                              |
| 3                              | strutture iperstatiche in acciaio e strutture portanti in laterizio con cordoli in cementi armati ad ogni piano, con fondazioni continue in cemento armato e con pareti trasversali con almeno 25 cm di spessore con interassi minori di 6 m e strutture a telaio in calcestruzzo armato con le colonne ad interassi minori di 6 m, con fondazioni continue o a platea. | 8 - 10                                   | 1/200 - 1/300                                                                                                                                                                                                                                              |
| 4                              | strutture della classe 3, ma che non soddisfano una della condizioni imposte e strutture in cemento armato con fondazioni a plinti.                                                                                                                                                                                                                                     | 6 - 8                                    | 1/300 - 1/500                                                                                                                                                                                                                                              |
| 5                              | strutture prefabbricate costituite da grandi pareti o elementi a blocchi.                                                                                                                                                                                                                                                                                               | 5 - 6                                    | 1/500 - 1/700                                                                                                                                                                                                                                              |

### 10. CONCLUSIONI

L'area oggetto dell'indagine è caratterizzata da un morfotipo antropico, si trova nella zona agricola della pianura Faentina e la morfologia è pianeggiante con quote attorno a 18 ÷19 m slm.

L'idrografia principale è costituito dalla Scolo Fosso Vecchio che scorre in adiacenza Est dell'area oggetto di variante al PRG e risulta l'impluvio del microbacino idrografico a cui appartiene l'area in esame. Tale scolo è un canale principale di bonifica che defluisce nel Canale Destra Reno a Nord di Alfonsine.

L'area non è mai stata soggetta ad allagamenti. Anche l'evento estremo del 1996 non ha determinato allagamenti dell'area in esame.

La falda idrica superficiale nell'area di progetto presenta mediamente un livello statico compreso tra di -2.0 m e -3.0 m dal p.c., corrispondente ad un periodo idrogeologico medio. Mentre il massimo livello idrico si attesta attorno a circa -1.2÷1.3 m dal piano di campagna attuale.

All'interno dei corpi sabbiosi, presenti a partire da circa -7.0÷ -9.0 m dal piano di campagna, la falda idrica si attesta a circa -1.2÷-1.5 m dal piano di campagna.

La presenza di un livello di falda prossimo al p.c. impone all'atto della progettazione esecutiva dei fabbricati di considerare tutte quelle opere necessarie ad evitare allagamenti di eventuali scantinati e risalita capillare lungo le murature.

A grandi linee, i terreni dell'area indagata sono costituiti prevalentemente da terreni limoso-argillosi a consistenza media, con intercalazioni di livelli sabbioso limosi con assetto stratigrafico lentiforme tra la profondità compresa tra -7÷8 m e -16 m, fino a circa 19÷20 m dal piano di campagna. Da tale profondità iniziano i terreni granulari appartenenti alla conoide distale del F. Lamone. Alla profondità compresa tra -29.5 m e -30.0 m il sondaggio effettuato ha evidenziato la presenza di ghiaia in matrice sabbiosa e limosa.

In base al Piano Stralcio di Bacino di T. Senio l'area oggetto di variante al PRG non ricade in zona perimetrata. Sempre per tale Piano l'area è soggetta all'art. 20 che fornisce le prescrizioni in merito alle prestazioni del territorio riferite all'invarianza idraulica.

In base alle NTC 2008 l'area di interesse presenta un valore di ag/g = 0.199, con un substrato appartenente alla categoria di suolo C. Risulta un coefficiente di amplificazione sismica per tipo di suolo S=1.41 ed, essendo in zona pianeggiante, il coefficiente di amplificazione morfologico risulta  $S_T = 1$ , quindi con accelerazione massima al suolo risulterà di  $a_{max}$ =0.281g.

Le frequenze fondamentali di risonanza del substrato del sito in esame, di interesse per l'ingegneria, risultano pari a

| Frequenza | Periodo |
|-----------|---------|
| (f=Hz)    | (T=sec) |
| 0.95      | 1.05    |

Le strutture di progetto dovranno avere frequenze diverse al fine di evitare pericolosi fenomeni di risonanza.

Il substrato del sito in esame non presenta rischio di liquefazione in caso di evento sismico di progetto con tempi di ritorno di 475 anni, ed i cedimenti post sismici risultano compatibili con le previste strutture di progetto sull'area oggetto di variante.

Per l'area di lottizzazione in esame non risultano significative differenziazioni areali relativamente alle caratteristiche geologiche, sismiche e geotecniche significative per le future strutture di progetto. Conseguentemente risulta nel complesso uniforme ai fini del progetto di lottizzazione.

I cedimenti in condizioni statiche valutati ipotizzando una generica fondazione a plinti risultano nel complesso accettabili per le prevedibili strutture di progetto.

Alla luce delle indagini e delle valutazioni sopra esposte, si ammette l'idoneità dell'area di interesse ai fini della fattibilità geologica, sismica e geotecnica per la realizzazione di fabbricati, così come delineati dal progetto di variante al PRG e con le indicazioni riportate nella presente relazione.

Si rammenta che, in ogni caso, il presente studio ha solo carattere di indagine di massima e che, quindi, ogni costruzione dovrà essere corredata da opportuna relazione tecnica a carattere esecutivo, come prescritto dalle Norme Tecniche sulle Costruzioni e dalle relative circolari esplicative che saranno in vigore all'atto degli esecutivi.

Febbraio 2012

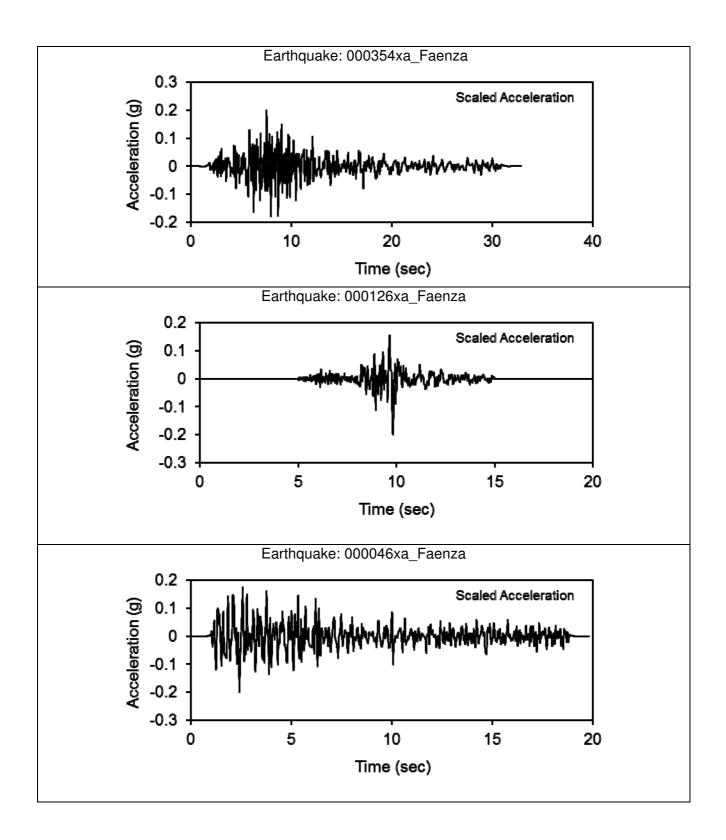


## **Appendice**

### LA MODELLAZIONE EERA

La modellazione numerica dei dati ottenuti dalle diverse prove dirette e indirette, è stata realizzata tramite l'ausilio del software EERA (1998).

Nel corso dei passati terremoti, si è osservato che il comportamento dei terreni dipende dalle condizioni locali. Le amplificazioni dovute agli effetti locali, sono simulate usando numerosi programmi che assumono condizioni di suolo semplificate, come strati di terreno orizzontali ed estesi infinitamente. Uno dei primi programmi sviluppati per questo scopo è stato SHAKE che è basato sulle soluzioni delle propagazioni delle onde di taglio, dovute a Kanai (1951), Roesset e Whitman (1969) e Tsai e Housner (1970).

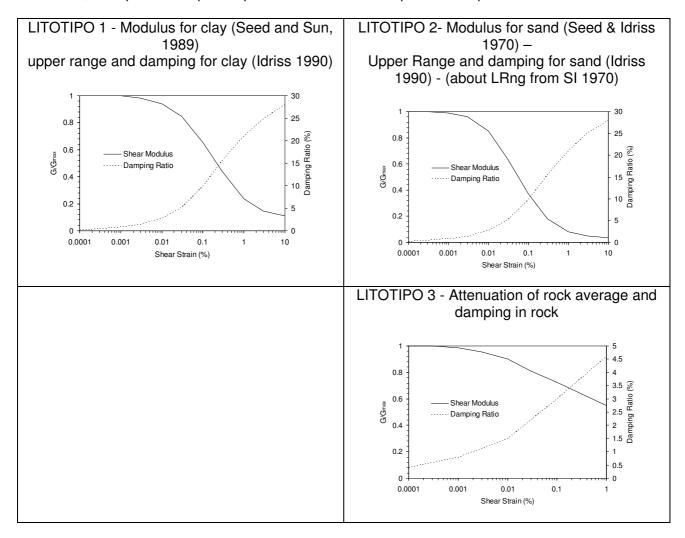

Shake assume che il comportamento ciclico del terreno, può essere simulato usando un modello lineare equivalente. SHAKE91 è una delle recenti versioni di Shake.

Nel 1998 è stato presentato il programma EERA, sviluppato in Fortran 90 partendo dagli stessi concetti di base di Shake; EERA è una moderna implementazione del concetto di analisi di risposta sismica.

La verifica monodimensionale dell'amplificazione locale, tramite l'utilizzo di EERA si compone di due fasi: elaborazione del modello, simulazione degli effetti indotti dal sisma di progetto. La prima fase consiste nell'inserire i dati (accelerazione, intervalli di tempo), relativi ai segnali di riferimento selezionati dalla banca dati accelerometrica "European Strong Motion database" e forniti dal Servizio Geologico, Sismico e dei Suoli regionale.

Si tratta di sismi che possono verificarsi nel territorio del comune oggetto di studio. Questi tre segnali sono già "scalati" rispetto al comune a cui si riferiscono, e sono rappresentati da tre differenti accelerogrammi di progetto, riportati nella delibera regionale:

- 1) impulsivo;
- 2) con componente predominante alle alte frequenze;
- 3) con ampio contenuto in frequenze.

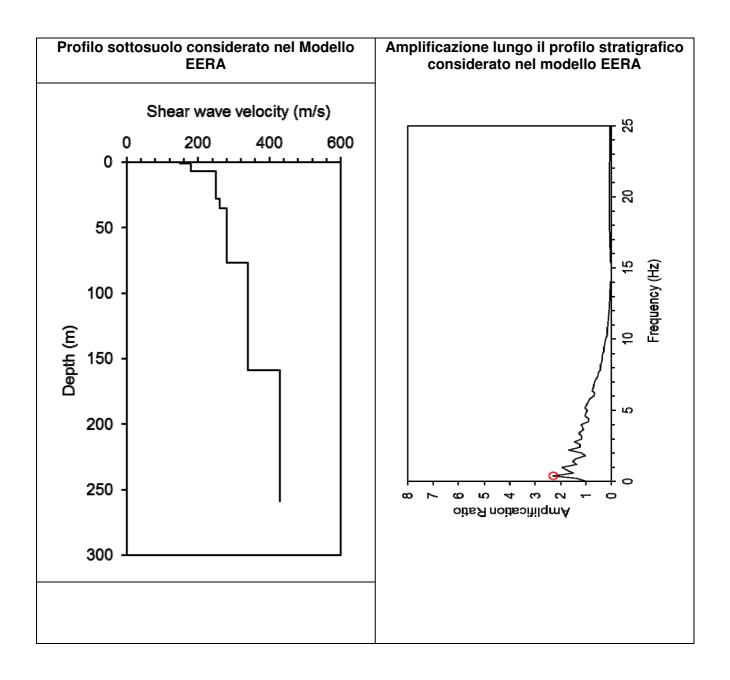


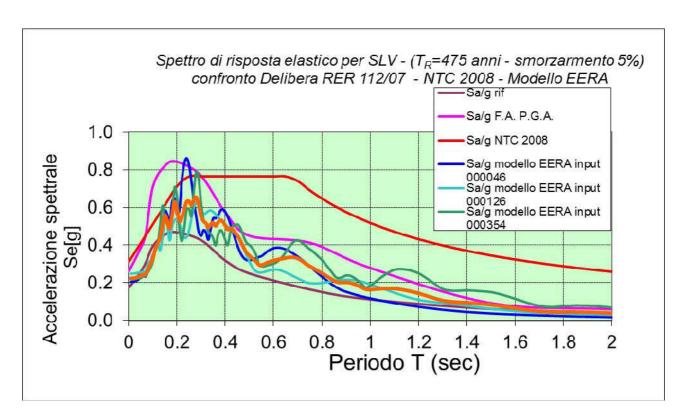

Dopo aver determinato gli input sismici, si è proceduto alla costruzione della colonna di sottosuolo di riferimento rappresentata da strati (layer) a differente tessitura e da diversi valori delle onde di taglio S (Vs).

La stratigrafia che caratterizza il profilo stratigrafico è stata derivata dalle indagini geognostiche e geofisiche realizzate nel sito di interesse e nelle zone contermini. In particolare la modellazione si è basata sulle curve H/V ottenute da tromino. Infatti lo spettro di amplificazione ottenuto dal modello deve essere simile a quello effettivamente misurato direttamente sul terreno, in particolare per il valore delle frequenze.

Per il comportamento elastico e di smorzamento dei vari strati di terreno o roccia del profilo stratigrafico ci si è riferiti principalmente ai litotipi (granulari, coesivi e rocciosi) proposti da Idriss (1990).

Nel caso specifico, in considerazione delle caratteristiche litologiche delle formazioni della zona di interesse, i litotipi utilizzati più frequentemente sono stati quelli sotto riportati.





In considerazione dell'assetto litostratigrafico della zona in esame, si è preferito trasferire il moto di un sisma di riferimento lungo tutta la colonna litostratigrafica ricostruita, indipendentemente dalla individuazione di un substrato sismico più o meno riconosciuto dalle indagini eseguite. Questa procedura, per questo tipo di situazione, sembra individuare meglio le frequenze tipiche di amplificazione del suolo più significative.

Utilizzando il programma EERA si forniscono i dati ricavati dalla modellazione numerica monodimensionale.

Per ricostruire il modello numerico si è fatto riferimento al profilo Vs ricavato dalle indagini geognostiche dirette e geofisiche ed ai segnali di rifermento per il comune di riferimento scaricabili dal sito della Regione Emilia-Romagna: www.regione.emilia-romagna.it/geologia/sismica.

| a <sub>max</sub> da modello            | imput 000046 | imput 000354 | imput 000126 |
|----------------------------------------|--------------|--------------|--------------|
| EERA                                   | 0.210g       | 0.220g       | 0.250g       |
| Frequenza<br>Fondamentale<br>(Fourier) | 2.49 Hz      | 0.87 Hz      | 2.29 Hz      |





Di seguito si valutano i rapporti spettrali PGA/PGAo e SI/SIo in riferimento a quanto proposto dalla DAL 112/07 rispetto al metodo semplificato di II livello ed al III livello con elaborazione delle tracce sismiche fornite dalla RER utilizzando il codice di calcolo EERA e il profilo del suolo emerso dalle indagini geofisiche sull'area per la valutazione degli effetti in superficie.

Dal modello EERA è stato possibile anche ricavare gli spettri delle pseudo velocità relative che sono state utilizzate per la valutazione dell'intensità di Housner, utilizzata dalla RER nella definizione dello spettro elastico, successivamente utile per le considerazioni sulle opere ingegneristiche.

L'intensità di Housner è stata calcolata utilizzando il foglio di calcolo excel implementando l'integrazione differenziale per intervalli di dT=0.1 sec fino a 0.6 e dT=0.2 sec fino a 1 secondo.

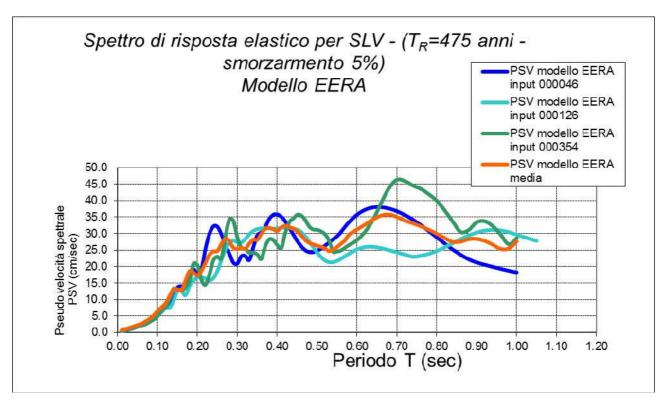
I valori sono stati confrontati con SIo proposti dalla RER. I valori del rapporto sono osservabili nelle sotto riportate tabelle.

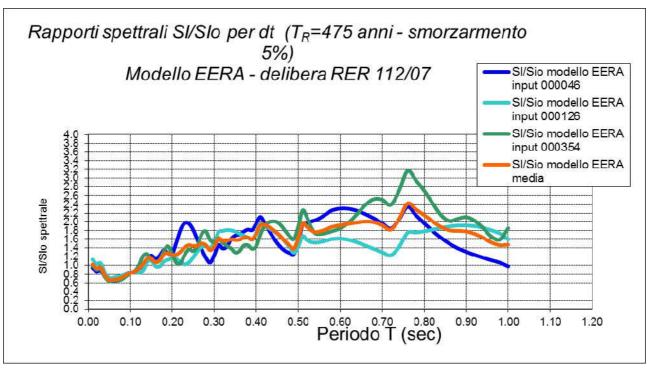
Si riporta anche la tabella del rapporto dei valori PGA del modello EERA e quello della DAL 112/2007.

In allegato si riportano i grafici degli spettri elastici di confronto ed il grafico delle amplificazioni SI/SIo per ogni intervallo di considerato nella sopra citata integrazione differenziale.

| Codice         | Intervallo considerato                                     | SI/SIo |
|----------------|------------------------------------------------------------|--------|
| EERA           | (F.A. 0.1s <to<0.5s.) =<="" td=""><td>1 4</td></to<0.5s.)> | 1 4    |
| 000046<br>EERA | ,                                                          | 1.4    |
| 000126         | (F.A. 0.1s <to<0.5s.) =<="" td=""><td>1.2</td></to<0.5s.)> | 1.2    |
| EERA<br>000354 | (F.A. 0.1s <to<0.5s.) =<="" td=""><td>1.3</td></to<0.5s.)> | 1.3    |
|                |                                                            | 1.3    |
| EERA<br>media  | (F.A. 0.1s <to<0.5s.) =<="" td=""><td>1.3</td></to<0.5s.)> | 1.3    |
| II livello     | (F.A. 0.1s <to<0.5s.) =<="" td=""><td>1.8</td></to<0.5s.)> | 1.8    |

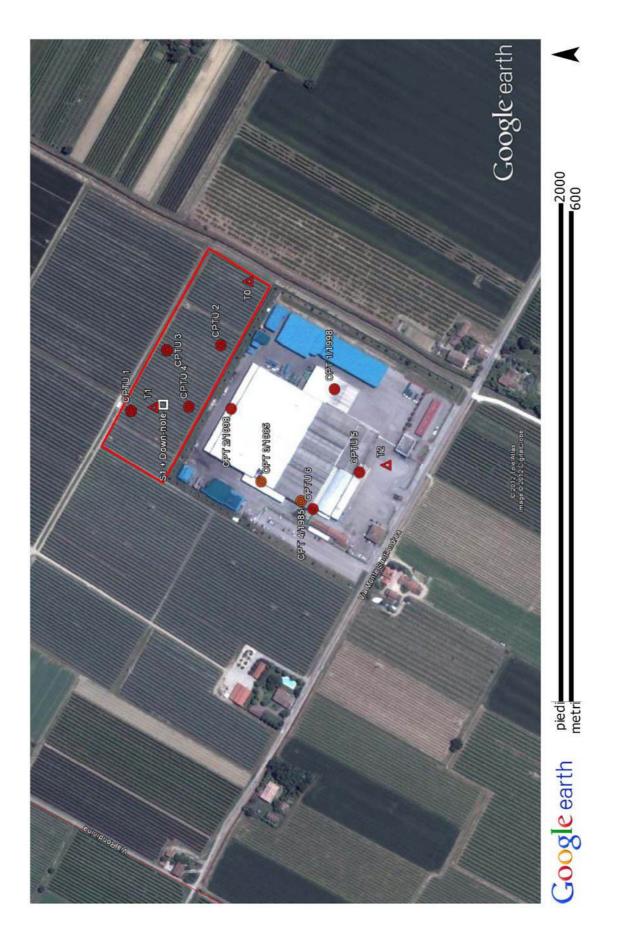
| Codice         | Intervallo considerato                                     | SI/SIo |
|----------------|------------------------------------------------------------|--------|
| EERA<br>000046 | (F.A. 0.5s <to<1.0s.) =<="" td=""><td>1.6</td></to<1.0s.)> | 1.6    |
| EERA<br>000126 | (F.A. 0.5s <to<1.0s.) =<="" td=""><td>1.8</td></to<1.0s.)> | 1.8    |
| EERA<br>000354 | (F.A. 0.5s <to<1.0s.) =<="" td=""><td>2.1</td></to<1.0s.)> | 2.1    |
| EERA<br>media  | (F.A. 0.5s <to<1.0s.) =<="" td=""><td>1.9</td></to<1.0s.)> | 1.9    |
| II livello     | (F.A. 0.5s <to<1.0s.) =<="" td=""><td>2.5</td></to<1.0s.)> | 2.5    |

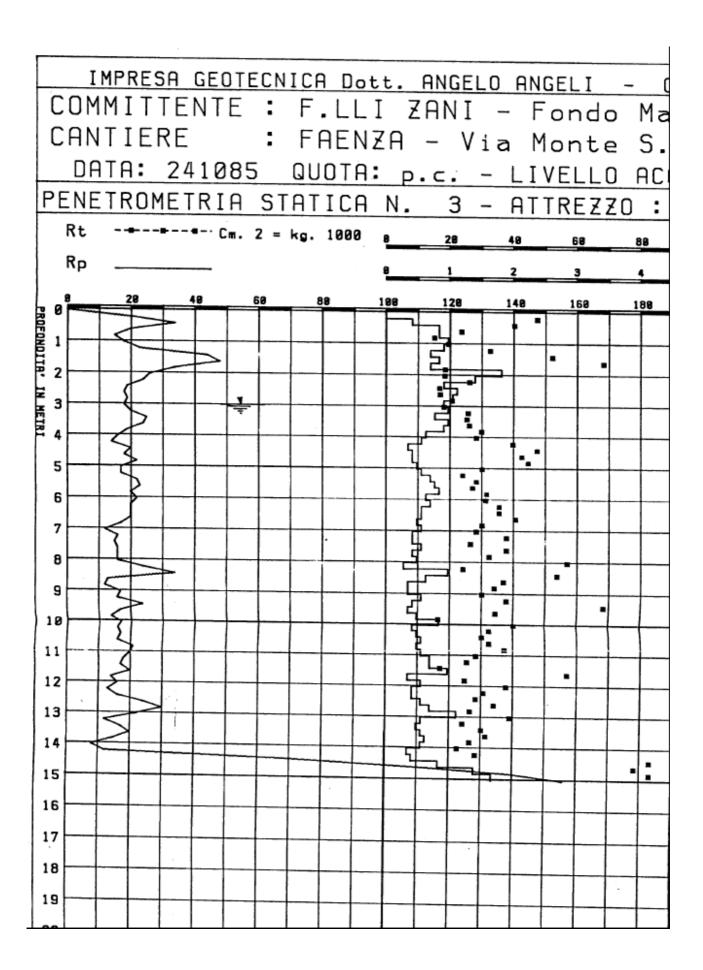

| Codice         | Intervallo considerato in<br>generale più gravoso<br>come osservabile dagli<br>spettri elastici | SI/SIo |
|----------------|-------------------------------------------------------------------------------------------------|--------|
| EERA<br>000046 | (F.A. 0.1s <to<0.3.) =<="" td=""><td>1.4</td></to<0.3.)>                                        | 1.4    |
| EERA<br>000126 | (F.A. 0.1s <to<0.3.) =<="" td=""><td>1.2</td></to<0.3.)>                                        | 1.2    |
| EERA<br>000354 | (F.A. 0.1s <to<0.3.) =<="" td=""><td>1.3</td></to<0.3.)>                                        | 1.3    |
| EERA<br>media  | (F.A. 0.1s <to<0.3.) =<="" td=""><td>1.3</td></to<0.3.)>                                        | 1.3    |

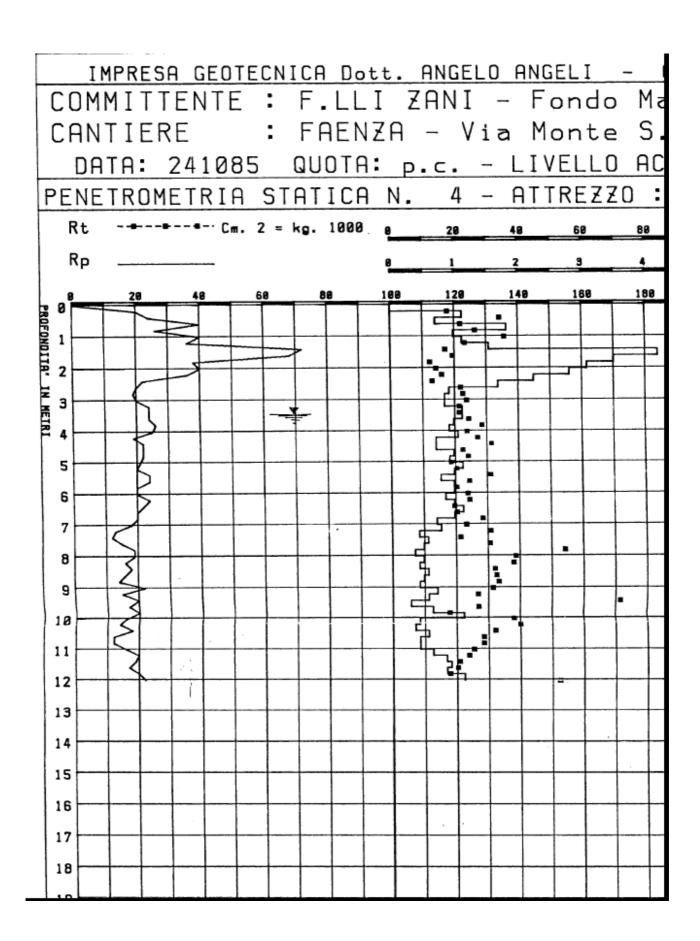

## Legenda

SI = intensità di Housner dello spettro di risposta al suolo SIo = intensità dello spettro di risposta al substrato per DAL 112/2007

PGA = picco d'accelerazione al suolo


PGAo = picco d'accelerazione al substrato per DAL 112/2007




# **ALLEGATI**

Ubicazione prove realizzate sul sito di interesse e quelle realizzate all'interno dell'azienda







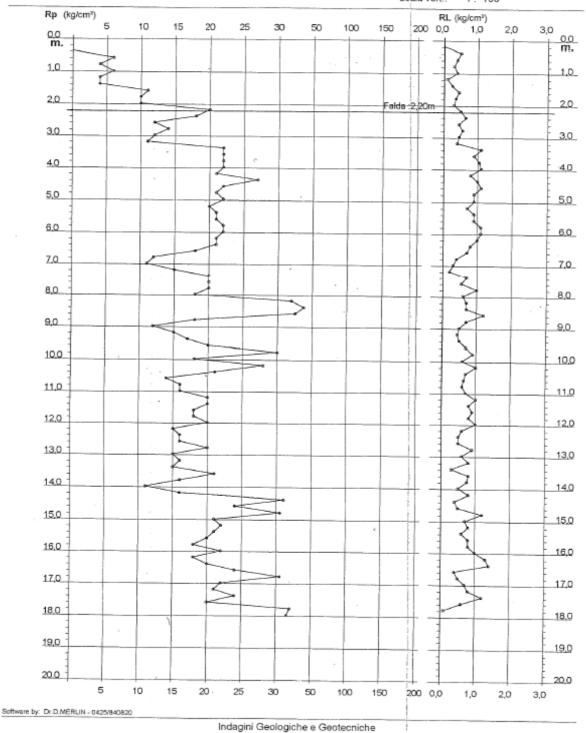
## Studio di Geologia Dott. Geologo VITTORIO ROSSI 44010 BOCCALEONE (Ferrara) - Via Viazzola, 46/A - Tel./Fax 0532-805046

Rifer, 81-98

## PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA

CPT 1 2.010496-02

- committente : - lavoro


località

Granfrutta Zani s.c. a r.l. Variante al P.R.G. Vigente Granarolo Faentino (Ra)

- data : 13/02/1998 - quota inizio :

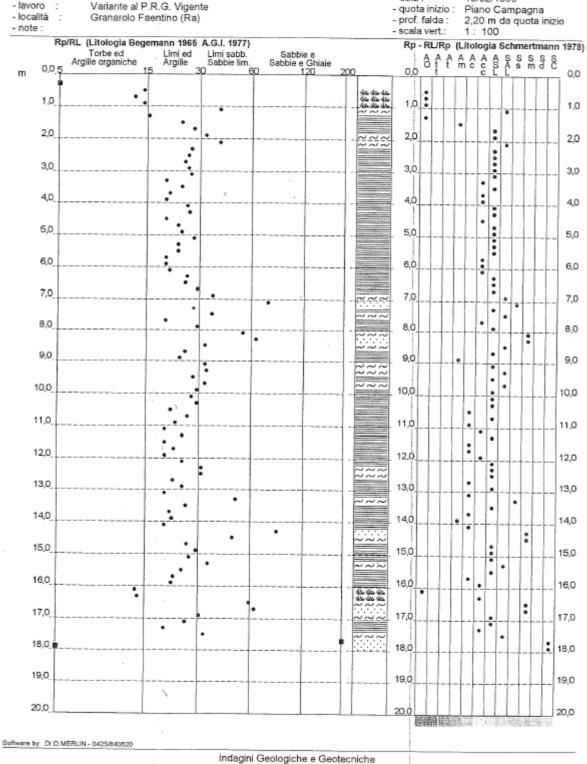
Piano Campagna - prof. falda ; 2,20 m da quota inizio

 scala vert.; 1:100



## Studio di Geologia Dott. Geologo VITTORIO ROSSI 44010 BOCCALEONE (Ferrara) - Via Viazzola, 46/A - Tel./Fax 0532-805046

Rifer, 81-98




CPT 1 2.010496-02

Granfrutta Zani s.c. a r.l. Variante al P.R.G. Vigente Granarolo Faentino (Ra) - committente :

lavoro

- data : 13/02/1998 quota inizio ;



## Studio di Geologia Dott. Geologo VITTORIO ROSSI 44010 BOCCALEONE (Ferrara) - Via Viazzola, 46/A - Tel./Fax 0532-805046

Rifer. 81-98

# PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 1

2.010496-02

- committente : Granfrutta Zani s.c. a r.l. - lavoro : Variante al P.R.G. Vigente - località : Granarolo Faentino (Ra)

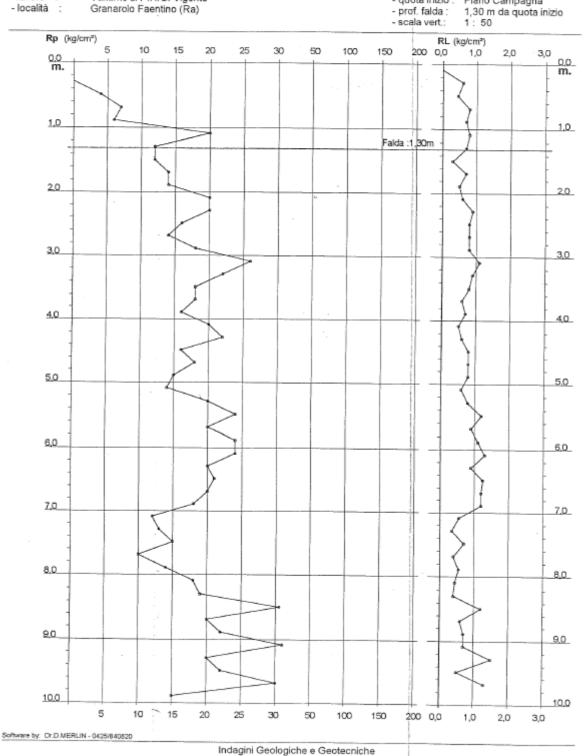
- data : 13/02/1998 - quota inizio : Piano Campagna - prof. falda : 2,20 m da quota inizio

- note : - pagina NATURA COESIVA NATURA GRANULARE Eu50 Eu25 E'50 E'25 Mo kg/cm² kg/cm² #2t (") ø3s (1) ø4s (") Amaxi'a odn (\*) (\*) (-) (-) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 38 1 39 41 10 7 219154308340822161683487936649760665454611140694 43334 177 28 -31 35 27 -30 33 25 12 25 50 30 34 33 26 27 38 39 ----0,033 322322313313900300 266729928827298332 - 26728827297 336534402333327227224 4 1122019154451 = -80159112515 = -1211 = 10 = 229 = -19 = 1 = 151227975 -63653553553544 -3213344433567 - 322335343 -32335535535544 -3213343557 - 3223353353 0,073 0,071 0,069 0,067 0,062 0,079 0,062 0,057 0,053 0,051 0,053 0,053 0,054 0,048 36 33 46 60 60 54 114 135 120 26077777777730130 - 2777797287 - -30 28 50 50 50 45 113 100 419 419 439 443 449 38 43 50 75 45 70 53 45 51 60 90 54 84 63 35423237832478725641584 15423333333322223223212 33 33 -27 27 30 30 1 29 27 27 33 0,023 50 50 60 60 27 33 27 27 33 60 27 50 0,021 31 31 32 27 27 27 35 35 35 35 35 35 38 38 39 38 38 25 25 26 0,005 0,004 0,019 40 40 50 28 28 29 28 29 28 29 48 48 60 31 32 27 25 26 0,019 25 35 57 40 53 35 35 37 37 38 53 0,047 0,025 0,042 0,016 0,016 0,015 0,012 31 30 31 29 29 29 34 33 34 32 32 32 32 32 32 37 38 37 35 35 35 35 35 4039 4039 3933 3933 3938 3943 4038 4040 29 28 29 27 28 27 27 28 3,9 2,8 2,8 29 27 28 26 26 26 26 27 26 85 60 80 53 55 53 50 102 72 96 63 66 63 60 1,07 0,82 0,85 436 420 428 655 629 642 0,80 0,75 0,85 0,75 0,75 0,80 2,6,7,7,3,4 420 405 437 408 427 630 608 656 612 641 7 32 29 0,016 55 66 35 35 36 35 35 35 35 37 37 29 29 29 29 29 29 31 25 26 28 25 25 25 25 28 28 28 28 0,009 0,020 0,037 0,014 0,011 0,018 27 28 29 28 27 28 27 28 27 28 27 20 30 33 40 53 77 35 40 33 53 60 50 60 80 55 53 60 50 90 60 72 96 66 63 72 60 114 108 0,86 0,86 0,93 0,94 0,93 0,90 0,89 1,76 1,78 1,80 1,81 1,83 1,85 0,82 0,89 0,80 442 465 436 63 72 60 663 697 655

## Studio di Geologia Dott. Geologo VITTORIO ROSSI 44010 BOCCALEONE (Ferrara) - Via Viazzola, 46/A - Tel./Fax 0532-805046

Rifer. 81-98

# PROVA PENETROMETRICA STATICA DIAGRAMMA DI RESISTENZA


CPT 2 2.010498-02

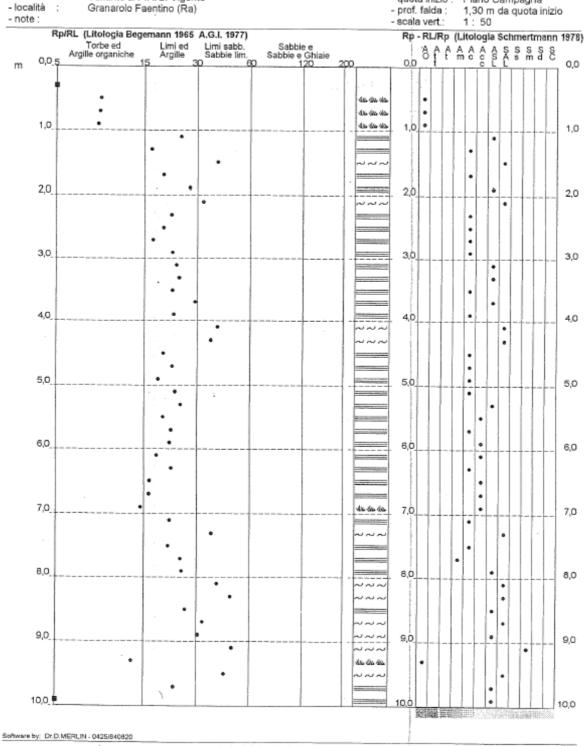
- committente : - lavoro :

Granfrutta Zani s.c. a r.l. Variante al P.R.G. Vigente

- data ; - guota inizio ;

13/02/1998
Piano Campagna




Rifer. 81-98



CPT 2

2.010496-02





Indagini Geologiche e Geotecniche

#### Studio di Geologia Dott, Geologo VITTORIO ROSSI 44010 BOCCALEONE (Ferrara) - Via Viazzola, 46/A - Tel./Fax 0532-805046

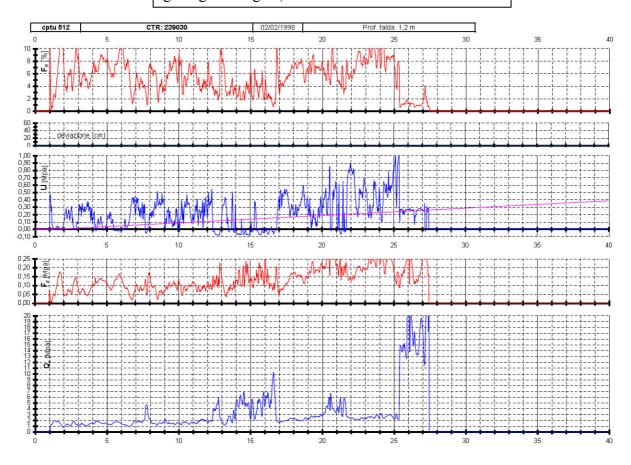
Rifer. 81-98

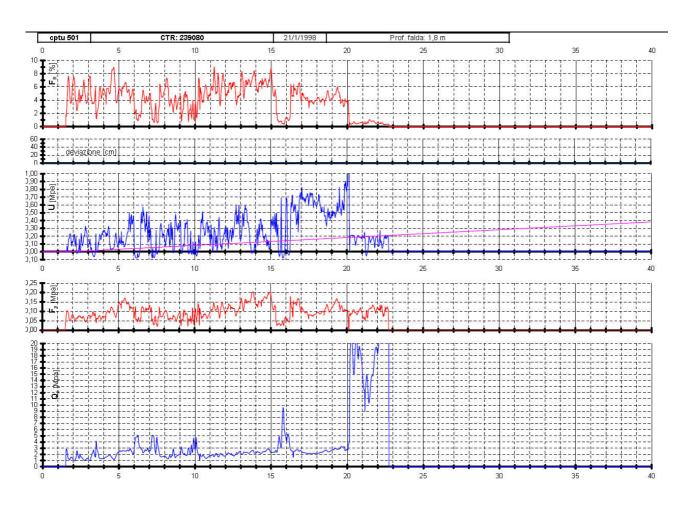
# PROVA PENETROMETRICA STATICA TABELLA PARAMETRI GEOTECNICI

CPT 2

2.010496-02

Granfrutta Zani s.c. a r.l. - committente : - data : 13/02/1998 lavoro Variante al P.R.G. Vigente - quota inizio: Piano Campagna località Granarolo Faentino (Ra) - prof. falda : 1,30 m da quota inizio - note :


- pagina : NATURA GRANULARE NATURA COESIVA Eu25 E'50 E'25 Mo kg/om² kg/om² Ma kg/cm/ Or 96 #1s (") #2s (°) #3s (°) #48 (") gidin (") (°) 126 136 136 136 136 136 136 136 144 128 128 149 136 0.20 0.35 0.30 0.80 0.57 0.64 0.64 0.70 0.80 0.75 0.85 0.75 0.75 0.75 33 33 0,113 0,062 33 33 44 34 36 34 41 27 50 0,091 41 34 41 36 33 39 28 37 55 7B 68 0,098 35 36 0,061 32 36 - - 29 34 27 33 32 5 24 - 7 - - 16 8 3 18 12 36 12 0 30 33 28 38 41 55 68 0,065 133 142 151 151 159 156 179 164 179 221 227 235 239 245 222 256 35 35 35 34 34 28 27 28 27 27 27 27 27 27 26 0,055 0,068 0,052 0,063 0,062 0,048 0,050 0,045 40 33 40 40 33 35 35 22 38 37 38 37 37 37 37 32 30 31 31 30 30 30 30 27 60 60 60 60 50 50 50 72 60 72 72 60 63 60 --35 0,016 35 33 34 36 33 34 35 39 41 39 40 41 39 40 40 40 28 31 28 29 31 28 29 30 27 29 27 28 29 27 28 29 27 32 53 37 57 33 37 50 48 80 55 85 55 55 75 36 38 36 37 38 36 37 38 36 37 57 96 60 60 60 60 60 60 60 90 0,031 0,034 0,089 0,035 0,040 0,070 0,033 0,038 0,058 4,8 0.80


50

441 

5,1 3,6

# Prove di riferimento regionali (vedi stralcio carta geologica allegata)





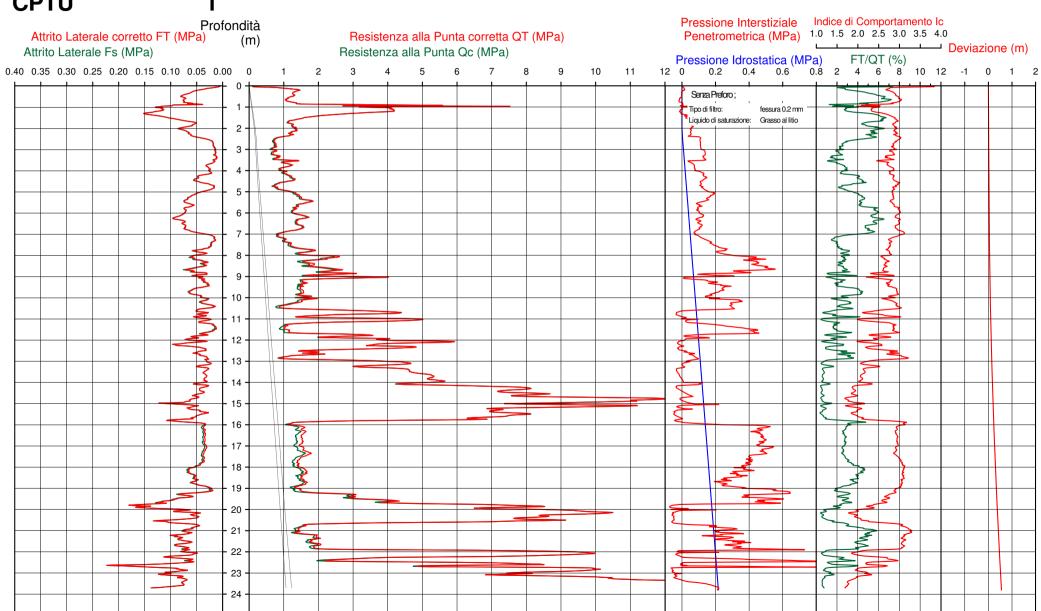
Comune Via Localita' Committente Data

Faenza Monte Sant'Andrea Granarolo Faentina Granfrutta Zani 24/01/2012

Falda foro chiuso a 0.80

Sigla della Punta Tecnopenta 010104 Inizio prova Azzeramento

Ultimo taratura quadagno 26-set-2011 Ultimo taratura per deriva termica 31-mar-2011




S.G.T. sas di Van Zutphen Albert & C.

Via Matteotti 50 48012 Bagnacavallo (RA)

www.geo55.com







### CPTU

Data
Cantiere / Via
Località
Comune 24/01/2012 Monte Sant'Andrea Granarolo Faentina Faenza

|               |                    |               |            |      | Faenza 2.10 foro chiuso a 0.80                               |              |                             |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|---------------|--------------------|---------------|------------|------|--------------------------------------------------------------|--------------|-----------------------------|-----------------|------------------------------------------------|-------------------------------|--------------|--------------------------------|-------------------|----------------------------------|------------------------------------------------|--|
|               |                    |               | l          |      | Litologia Robertson 1990                                     |              |                             |                 |                                                | Densità                       | Angolo       |                                | OCR               | Modulo                           | Velocità Vs                                    |  |
| QT<br>daN/cmq | Qc1N<br>Idriss & E | FT<br>daN/cmq | FT/Qnet    |      | basato su Fr vs Qc1N                                         | H<br>m       | Litologia grafica           | Falda<br>idrica | Addensamento (Sabbia)<br>Consistenza (Argilla) | Relativa<br>Tatsuoka 199<br>% | Attrito o'   | Coesione<br>Benassi<br>daN/cmq | 0.20<br>Robertson | Edometrico<br>Benassi<br>daN/cmq | Baldi (sabbie),<br>Mayne & Rix (argil<br>m/sec |  |
| 4.8           | 8.2                |               | 3.7        | 3 22 | argilla-argilla limosa                                       |              | ==:==                       |                 | Fluido-plastica (Molto Soffice)                |                               |              | 0.36                           | 105.88            | 29.9                             | 84                                             |  |
| 13.0          | 22.1               | 0.60          | 4.6        |      | limo argilloso-argilla limosa                                | 0.10         | -::-::=                     |                 | Plastica Plastica                              |                               |              | 0.80                           | 100.00            | 74.6                             | 157                                            |  |
|               |                    |               |            |      |                                                              |              | =::=::=::= <br>=::=::=::=   |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
| 11.4          | 19.4               | 0.74          | 6.6        | 2 99 | argilla-argilla limosa                                       | 0.50         | =;;=;;= <br>==;==           |                 | Plastica                                       | -                             |              | 0.72                           | 19.19             | 63.4                             | 144                                            |  |
| 11.4          | 13.4               | 0.74          | 0.0        | 2.00 | argina argina iiriosa                                        |              | :                           |                 | i idolica                                      |                               |              | 0.72                           | 13.13             | 00.4                             | 144                                            |  |
| 23.2          | 39.4               | 0.61          | 3.2        | 2.55 | sabbia limosa-limo sabbioso                                  | 0.80         | =::=::= <br>::::=:::=       |                 | Mediamente Addensata                           | 36.2                          | 42.6         |                                |                   | 135.3                            | 215                                            |  |
| 45.5<br>38.9  | 76.6<br>66.1       | 1.12          | 2.8        |      | sabbia limosa-limo sabbioso<br>sabbia limosa-limo sabbioso   | 1.00         | ::::=::::=::::              |                 | Mediamente Addensata Mediamente Addensata      | 58.2<br>53.4                  | 45.3<br>43.6 |                                |                   | 249.9<br>226.9                   | 219<br>235                                     |  |
|               |                    |               |            |      |                                                              | 4.00         | :::=:::=:::                 |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
| 14.9          | 25.4               | 0.85          | 5.8        | 2.87 | limo argilloso-argilla limosa                                | 1.30         | ::::=:::=::: <br>=::=::=::= |                 | Plastica                                       |                               |              | 0.88                           |                   | 84.3                             | 166                                            |  |
|               |                    |               |            |      |                                                              |              | =::=::=::= <br>=::=::=::=   |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              |              | =::=::=:= <br>=::=::=:=     |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              |              | =::=::=::=                  |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              | 2.10         | =;:=;:=;:= <br>=::=::=::=   | H2O             |                                                |                               |              |                                |                   |                                  |                                                |  |
| 12.0          | 20.4               | 0.63          | 5.5        | 2.92 | limo argilloso-argilla limosa                                |              | =::=::=:= <br>=::=::=:=     |                 | Plastica                                       |                               |              | 0.75                           |                   | 67.9                             | 149                                            |  |
|               |                    |               |            |      |                                                              | 2.40         | =::=::=::=                  |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
| 7.8           | 13.2               | 0.32          | 4.4        | 2.99 | argilla-argilla limosa                                       | 2.60         | ==;== <br>==;==             |                 | Molle-plastica (Soffice)                       |                               |              | 0.53                           | 3.47              | 44.7                             | 113                                            |  |
| 7.6           | 12.9               | 0.15          | 2.1        | 2.82 | limo argilloso-argilla limosa                                |              | =::=::=::= <br>=::=::=::=   |                 | Molle-plastica (Soffice)                       |                               |              | 0.52                           |                   | 33.0                             | 112                                            |  |
|               |                    |               |            |      |                                                              |              | =::=::=::=                  |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              |              | =;:=;:=;:= <br>=;:=;:=;:=   |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              |              | =::=::=:= <br>=::=::=:=     |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              |              | =::=::=::=                  |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
| 12.2          | 19.9               | 0.16          | 1.4        | 2.57 | sabbia limosa-limo sabbioso                                  | 3.50<br>3.60 | =::=::=;:= <br>::::=:::=::: |                 | Molto Sciolta                                  | 13.8                          | 32.2         |                                |                   | 43.0                             | 149                                            |  |
| 11.4          | 18.7               | 0.26          | 2.4        | 2.72 | limo argilloso-argilla limosa                                | 3.80         | =;;=;;=;;= <br>=;;=;;=;;=   |                 | Plastica                                       |                               |              | 0.72                           |                   | 54.5                             | 144                                            |  |
| 9.4           | 15.4               | 0.26          | 3.0        | 2.84 | limo argilloso-argilla limosa                                | 4.00         | =::=::=:=                   |                 | Molle-plastica (Soffice)                       |                               |              | 0.62                           |                   | 54.4                             | 128                                            |  |
| 11.7          | 18.1               | 0.40          | 3.6        | 2.83 | limo argilloso-argilla limosa                                | 4.00         | =::=::=::=                  |                 | Plastica                                       |                               |              | 0.73                           |                   | 67.9                             | 146                                            |  |
|               |                    |               |            |      |                                                              |              | =::=::=;:= <br>=::=::=;:=   |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              | 4.50         | =;;=;;=;;= <br>=;;=;;=;;=   |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
| 8.4           | 12.8               | 0.25          | 3.2        | 2.92 | limo argilloso-argilla limosa                                |              | ==:==                       |                 | Molle-plastica (Soffice)                       |                               |              | 0.57                           |                   | 49.0                             | 119                                            |  |
|               |                    |               |            |      |                                                              |              | =::=::=::= <br>=::=::=::=   |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
| 14.7          | 20.4               | 0.58          | 4.2        | 2.84 | limo argilloso-argilla limosa                                | 4.90         | =;;=;;=;;= <br>=;;=;;=;;=   |                 | Plastica                                       |                               |              | 0.87                           |                   | 84.7                             | 168                                            |  |
|               |                    |               |            |      |                                                              |              | =::=::=::=                  |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              |              | =::=::=::=                  |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              |              | =::=::=;:= <br>=::=::=::=   |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              | 5.70         | =;;=;;=;;= <br>=;;=;;=;;=   |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
| 14.1          | 18.4               | 0.78          | 6.0        | 2.98 | argilla-argilla limosa                                       | 0.70         | :                           |                 | Plastica                                       |                               |              | 0.84                           | 3.81              | 79.4                             | 164                                            |  |
|               |                    |               |            |      |                                                              |              | ==:== <br>==:==             |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              |              | ==;== <br>=;:=;:=           |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              |              | ==:== <br>==:==             |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              | 6.50         | :                           |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
| 14.1          | 17.6               | 0.69          | 5.4        | 2.96 | argilla-argilla limosa                                       |              | =::=::=::= <br>=::=::=::=   |                 | Plastica                                       |                               |              | 0.85                           | 3.52              | 80.3                             | 164                                            |  |
|               |                    |               |            |      |                                                              | 6.90         | =;;=;;= <br>==;==           |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
| 8.8           | 11.0               | 0.26          | 3.4        | 2.98 | argilla-argilla limosa                                       |              | ==;==                       |                 | Molle-plastica (Soffice)                       |                               |              | 0.59                           | 1.99              | 51.5                             | 123                                            |  |
|               |                    |               |            |      |                                                              | 7.20         | ==:== <br>=::=::=           |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
| 13.8          | 16.2               | 0.30          | 2.3        | 2.76 | limo argilloso-argilla limosa                                |              | =::=::=::= <br>=::=::=::=   |                 | Plastica                                       |                               |              | 0.83                           |                   | 63.0                             | 160                                            |  |
|               |                    |               |            |      |                                                              |              | =::=::=::=                  |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              |              | =::=::=                     |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              |              | =::=::=::= <br>=::=::=::=   |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
| 23.8          | 26.6               | 0.56          | 2.5        | 2 61 | limo argilloso-argilla limosa                                | 8.00         | =;;=;;=;;=                  |                 | Solido-plastica (Duro)                         | 1                             |              | 1.19                           | -                 | 117.2                            | 227                                            |  |
|               |                    |               |            |      |                                                              | 8.20         | =::=::=                     |                 |                                                | ļ                             |              |                                |                   |                                  |                                                |  |
| 17.5          | 19.4               | 0.35          | 2.2        | 2.68 | limo argilloso-argilla limosa                                |              | =::=::=::= <br>=::=::=::=   |                 | Plastica                                       |                               |              | 0.98                           |                   | 76.8                             | 189                                            |  |
| 22.9          | 24.8               | 0.55          | 2.6        | 2.64 | limo argilloso-argilla limosa                                | 8.50         | =;;=;;=;;= <br>=;;=;;=;;=   |                 | Solido-plastica (Duro)                         | -                             |              | 1.17                           | -                 | 115.2                            | 223                                            |  |
|               |                    |               |            |      | J                                                            | Ω 0Λ         | =::=::=::=                  |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
| 27.1          | 29.0               |               | 1.2        | 2.40 | sabbia limosa-limo sabbioso                                  | 8.90         | =::=::=:::                  |                 | Sciolta                                        | 26.1                          | 33.4         |                                |                   | 91.8                             | 217                                            |  |
| 21.0<br>32.8  | 22.4<br>34.6       |               | 2.8<br>1.4 |      | limo argilloso-argilla limosa<br>sabbia limosa-limo sabbioso |              | =;:=;:=;:= <br>::::=:::=::: |                 | Solido-plastica (Duro)<br>Sciolta              | 32.0                          | 34.6         | 1.10                           | -                 | 113.7<br>116.3                   | 212<br>234                                     |  |
| 15.4          | 16.0               |               |            |      | limo argilloso-argilla limosa                                |              | =::=::=::=                  |                 | Plastica                                       |                               |              | 0.90                           |                   | 90.0                             | 175                                            |  |
|               |                    |               |            |      |                                                              |              | =::=::=::=                  |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              |              | =::=::=::= <br>=::=::=::=   |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
|               |                    |               |            |      |                                                              |              | =::=::=::=                  |                 |                                                |                               |              |                                |                   |                                  |                                                |  |
| 100           | 17.                | 0.05          | 0.0        | 0.74 | limo arailloso oraillo li                                    | 9.90         | =::=::=::=                  |                 | Plastica                                       |                               |              | 0.00                           |                   | 70.0                             | 105                                            |  |
| 16.9          | 17.1               | 0.35          | 2.3        | 2./4 | limo argilloso-argilla limosa                                |              | =::=::=                     |                 | Plastica                                       | I                             | I            | 0.96                           | 1                 | 78.2                             | 185                                            |  |



#### **CPTU**

24/01/2012 Monte Sant'Andrea Granarolo Faentina Data Cantiere / Via Località
Comune
Profondità falda idrica m.

Faenza 2 10

| Profondità falda idrica m. |                    |      |            |                 | .10 foro chiuso a 0.80                                |        |                                          |                 |                                                    |                                     |                            |                                |                          |                                            |                                                               |
|----------------------------|--------------------|------|------------|-----------------|-------------------------------------------------------|--------|------------------------------------------|-----------------|----------------------------------------------------|-------------------------------------|----------------------------|--------------------------------|--------------------------|--------------------------------------------|---------------------------------------------------------------|
| <b>)T</b><br>aN/cmq        | Qc1N<br>Idriss & E |      | FT/Qnet    | Ic<br>Robertson | Litologia Robertson 1990<br>basato su Fr vs Qc1N      | H<br>m | Litologia grafica                        | Falda<br>idrica | Addensamento (Sabbia)<br>Consistenza (Argilla)     | Densità<br>Relativa<br>Tatsuoka 199 | Angolo Attrito   Robertson | Coesione<br>Benassi<br>daN/cmq | OCR<br>0.20<br>Robertson | Modulo<br>Edometrico<br>Benassi<br>daN/cmq | Velocità Vs<br>Baldi (sabbie),<br>Mayne & Rix (argil<br>m/sec |
|                            |                    |      | ,-         |                 |                                                       |        | =::=::=::=                               | 1               |                                                    |                                     |                            |                                |                          |                                            |                                                               |
| 12.9                       | 12.8               | 0.32 | 2.8        | 2.89            | limo argilloso-argilla limosa                         |        | =::=::=::= <br>=::=::=::= <br>=::=::=::= |                 | Plastica                                           |                                     |                            | 0.79                           |                          | 69.9                                       | 154                                                           |
| 9.2<br>32.2                | 9.0<br>31.5        | 0.20 | 2.7<br>1.7 |                 | argilla-argilla limosa<br>sabbia limosa-limo sabbioso | 10.50  | ==;== <br>=:;=:;=:;= <br>::::=:::=:::    |                 | Molle-plastica (Soffice)<br>Sciolta                | 28.9                                | 33.6                       | 0.61                           | 1.43                     | 48.6<br>121.9                              | 126<br>229                                                    |
| 17.5                       | 16.9               | 0.42 | 2.9        | 2.79            | limo argilloso-argilla limosa                         |        | ::::=:::=::: <br>=::=::=::=              |                 | Plastica                                           |                                     |                            | 0.98                           |                          | 97.5                                       | 189                                                           |
| 34.7                       | 33.4               | 0.37 | 1.5        |                 | sabbia limosa-limo sabbioso                           |        | :::=:::=::::                             |                 | Sciolta                                            | 30.8                                | 33.9                       |                                |                          | 126.1                                      | 224                                                           |
| 11.8                       | 11.0               | 0.20 | 2.0        | 2.86            | limo argilloso-argilla limosa                         |        | =;=;=;= <br>=;=;=;= <br>=;=;=;=          |                 | Plastica                                           |                                     |                            | 0.74                           |                          | 48.6                                       | 147                                                           |
| 32.8                       | 30.6               | 0.37 | 1.2        | 2.37            | sabbia limosa-limo sabbioso                           |        | =;:=;:=;:= <br>::::=:::=:::              |                 | Sciolta                                            | 27.9                                | 33.3                       |                                |                          | 110.9                                      | 238                                                           |
| 23.8                       | 22.0               | 0.54 | 2.5        | 2.68            | limo argilloso-argilla limosa                         |        | =::=::=                                  |                 | Solido-plastica (Duro)                             |                                     |                            | 1.20                           |                          | 118.1                                      | 229                                                           |
| 40.1                       | 37.0               | 0.57 | 1.6        | 2.37            | sabbia limosa-limo sabbioso                           | 12.50  |                                          |                 | Sciolta                                            | 34.2                                | 34.3                       |                                |                          | 149.2                                      | 248                                                           |
| 18.3                       | 16.1               | 0.48 | 3.0        | 2.83            | limo argilloso-argilla limosa                         |        | =::=::=!                                 |                 | Plastica                                           |                                     |                            | 1.01                           |                          | 108.3                                      | 194                                                           |
| 10.8                       | 9.3                | 0.32 | 3.9        | 3.09            | argilla-argilla limosa                                |        | =;:=;:= <br>==:==                        |                 | Plastica                                           | +                                   |                            | 0.69                           | 1.41                     | 62.4                                       | 139                                                           |
| 37.6                       | 33.3               | 0.33 | 1.0        |                 | sabbia limosa-limo sabbioso                           | 12.90  | ==:==                                    |                 | Sciolta                                            | 30.7                                | 33.5                       | -                              | -                        | 122.8                                      | 231                                                           |
| 37.0                       | 30.3               | 0.55 | 1.0        | 2.23            | Sabbia ilifiosa-ilifio Sabbioso                       | 13.30  |                                          |                 | Sciona                                             | 30.7                                | 33.3                       |                                |                          | 122.0                                      | 231                                                           |
| 49.6                       | 43.5               | 0.35 | 0.8        | 2.13            | sabbia limosa-limo sabbioso                           |        |                                          |                 | Mediamente Addensata                               | 39.5                                | 35.1                       |                                |                          | 155.4                                      | 217                                                           |
| 76.7                       | 67.6               | 0.42 | 0.6        | 1.91            | sabbia-sabbia limosa                                  | 14.10  | ::::=::::=::::                           |                 | Mediamente Addensata                               | 54.1                                | 37.4                       |                                |                          | 235.5                                      | 209                                                           |
|                            |                    |      |            |                 |                                                       | 14.70  |                                          |                 |                                                    |                                     |                            |                                |                          |                                            |                                                               |
| 113.7                      | 102.3              | 0.60 | 0.5        | 1.74            | sabbia-sabbia limosa                                  |        |                                          |                 | Addensata                                          | 67.7                                | 39.5                       |                                |                          | 348.5                                      | 222                                                           |
| 82.0                       | 70.8               | 0.58 | 0.7        | 1.94            | sabbia-sabbia limosa                                  | 14.90  |                                          |                 | Mediamente Addensata                               | 55.6                                | 37.5                       |                                |                          | 256.3                                      | 214                                                           |
| 61.3                       | 50.9               | 0.73 | 1.4        | 2.20            | sabbia limosa-limo sabbioso                           | 15.60  | ::::=::::=::::                           |                 | Mediamente Addensata                               | 44.7                                | 35.6                       |                                |                          | 214.9                                      | 257                                                           |
|                            |                    |      |            |                 |                                                       | 15.80  | :::=:::=:::                              |                 |                                                    |                                     |                            |                                |                          |                                            |                                                               |
| 14.9                       | 11.1               | 0.48 | 4.0        |                 | argilla-argilla limosa                                | 16.10  | ==:== <br>==:==                          |                 | Plastica                                           |                                     |                            | 0.88                           | 1.65                     | 86.4                                       | 168                                                           |
| 15.7                       | 11.5               | 0.35 | 2.7        | 2.92            | limo argilloso-argilla limosa                         | 16 50  |                                          |                 | Plastica                                           |                                     |                            | 0.91                           |                          | 82.7                                       | 176                                                           |
| 15.3                       | 11.0               | 0.34 | 2.8        | 2.95            | limo argilloso-argilla limosa                         |        | =::=::=::= <br>=::=::=::=                |                 | Plastica                                           |                                     |                            | 0.89                           |                          | 82.8                                       | 173                                                           |
| 14.9                       | 10.6               | 0.34 | 2.8        | 2.96            | argilla-argilla limosa                                |        | ==;==                                    |                 | Plastica                                           |                                     |                            | 0.88                           | 1.55                     | 81.9                                       | 171                                                           |
| 16.3                       | 11.5               | 0.35 | 2.6        | 2.91            | limo argilloso-argilla limosa                         | 17.00  |                                          |                 | Plastica                                           |                                     |                            | 0.94                           |                          | 82.9                                       | 181                                                           |
|                            |                    |      |            |                 |                                                       | 17.50  | =::=::=!                                 |                 | Di vi                                              | 1                                   |                            |                                |                          |                                            |                                                               |
| 15.1                       | 10.2               | 0.48 | 4.0        | 3.06            | argilla-argilla limosa                                |        |                                          |                 | Plastica                                           |                                     |                            | 0.89                           | 1.45                     | 87.6                                       | 172                                                           |
| ,                          |                    |      |            |                 | Para and the control of                               | 19.00  | ==;==                                    |                 | Disaria                                            | 1                                   |                            |                                |                          |                                            |                                                               |
| 15.6                       | 10.2               | 0.25 | 2.0        | 2.90            | limo argilloso-argilla limosa                         | 19.20  | =::=::=::=                               |                 | Plastica                                           |                                     |                            | 0.91                           |                          | 65.1                                       | 175                                                           |
| 27.0<br>35.3               | 18.4<br>24.6       | 0.74 | 3.2<br>2.8 |                 | limo argilloso-argilla limosa                         |        | =::=::=::=<br>=::=::=::=                 |                 | Solido-plastica (Duro)<br>Semi solida (Molto duro) |                                     |                            | 1.29<br>1.49                   |                          | 157.8<br>191.0                             | 248<br>290                                                    |
| JJ.3                       | 24.0               | 0.09 | 2.8        | 2.0/            | limo argilloso-argilla limosa                         | 19.70  | =::=::=::= <br>=::=::=::= <br>=::=::=::= |                 | Jenn Sonda (Monto duro)                            |                                     |                            | 1.49                           |                          | 191.0                                      | 290                                                           |
| 72.5                       | 54.7               | 1.40 | 2.1        | 2.31            | sabbia limosa-limo sabbioso                           |        | :::=:::=::::                             |                 | Mediamente Addensata                               | 47.1                                | 35.3                       |                                |                          | 309.2                                      | 333                                                           |



48012 Bagnacavallo (RA)

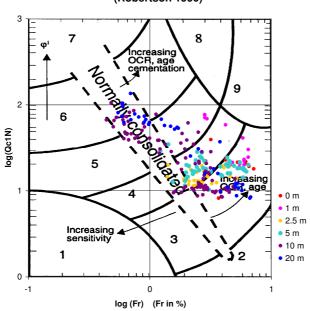
#### **CPTU**

Data Cantiere / Via 24/01/2012 Monte Sant'Andrea Granarolo Faentina Località

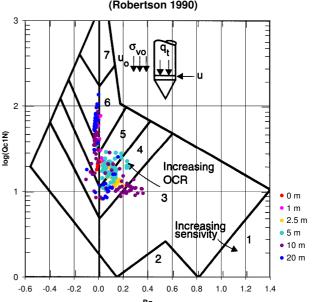
Comune Faenza

foro chiuso a 0.80

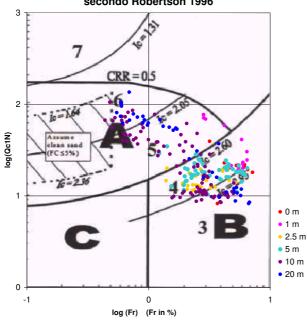
| Profondità falda idrica m. |                    |               |            |                 | zaenza Vs. 2.10 foro chiuso a 0.80                    |       |                                              |        |                 |                                                |                                          |                                   |                                |      |                                            |                                                            |  |
|----------------------------|--------------------|---------------|------------|-----------------|-------------------------------------------------------|-------|----------------------------------------------|--------|-----------------|------------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------|------|--------------------------------------------|------------------------------------------------------------|--|
|                            | Qc1N<br>Idriss & E | FT<br>daN/cmq | FT/Qnet    | Ic<br>Robertson | Litologia Robertson 1990<br>basato su Fr vs Qc1       | N H   | Litologia grafica                            |        | Falda<br>idrica | Addensamento (Sabbia)<br>Consistenza (Argilla) | Densità<br>Relativa<br>Tatsuoka 199<br>% | Angolo<br>Attrito o'<br>Robertson | Coesione<br>Benassi<br>daN/cmq |      | Modulo<br>Edometrico<br>Benassi<br>daN/cmq | Velocità Vs<br>Baldi (sabbie),<br>Mayne & Rix (an<br>m/sec |  |
| 91.6                       | 71.0               | 0.61          | 0.7        | 1.93            | sabbia-sabbia limosa                                  | 00.40 |                                              | i<br>: |                 | Mediamente Addensata                           | 55.7                                     | 36.7                              |                                |      | 284.9                                      | 233                                                        |  |
| 8.0                        | 44.6               | 0.91          | 2.0        | 2.39            | sabbia limosa-limo sabbioso                           |       | ::::=::::=:::: <br>::::=::::=::::            | :      |                 | Mediamente Addensata                           | 40.4                                     | 34.0                              |                                |      | 254.3                                      | 267                                                        |  |
| 4.7                        | 8.8                | 0.60          | 5.6        | 3.20            | argilla-argilla limosa                                | 20.70 | =;;=;;= <br>==;== <br>==;==                  |        |                 | Plastica                                       |                                          |                                   | 0.87                           | 1.17 | 83.1                                       | 169                                                        |  |
| 8.8                        | 11.3               | 0.78          | 5.2        | 3.10            | argilla-argilla limosa                                | 21.10 | ==;== <br>==;== <br>==;==                    |        |                 | Plastica                                       |                                          |                                   | 1.03                           | 1.55 | 106.8                                      | 197                                                        |  |
|                            |                    |               |            |                 |                                                       | 21.80 | ==;== <br>==;== <br>==;==                    |        |                 |                                                |                                          |                                   |                                |      |                                            |                                                            |  |
| 5.7<br>8.5                 | 15.9<br>65.3       | 0.69          | 3.6<br>0.8 |                 | limo argilloso-argilla limosa<br>sabbia-sabbia limosa | 21.90 | =;;=;;=;;= <br>::::=:::=:::                  | :I     |                 | Solido-plastica (Duro) Mediamente Addensata    | 52.9                                     | 35.9                              | 1.25                           |      | 149.2<br>279.9                             | 240<br>243                                                 |  |
| 7.3                        | 24.0               | 0.75          | 2.5        | 2.66            | limo argilloso-argilla limosa                         | 22.20 | :::=:::=::: <br>=::=::=                      | i      |                 | Semi solida (Molto duro)                       |                                          |                                   | 1.53                           |      | 182.8                                      | 293                                                        |  |
| 7.2                        | 46.6               | 1.52          | 2.6        | 2.41            | sabbia limosa-limo sabbioso                           |       | :::=:::=:::=                                 |        |                 | Mediamente Addensata                           | 41.8                                     | 34.1                              |                                |      | 344.0                                      | 344                                                        |  |
| 6.8                        | 62.4               | 0.99          | 1.2        | 2.12            | sabbia limosa-limo sabbioso                           |       | =::=::=::: <br>::::=:::=::: <br>::::=:::=::: | 4      |                 | Mediamente Addensata                           | 51.5                                     | 35.6                              |                                |      | 295.4                                      | 278                                                        |  |
| 99.3                       | 72.8               | 0.79          | 0.8        | 1.97            | sabbia-sabbia limosa                                  |       | ::::=::::=::::                               |        |                 | Mediamente Addensata                           | 56.5                                     | 36.3                              |                                |      | 314.9                                      | 244                                                        |  |
| 9.1                        | 109.8              | 0.84          | 0.6        | 1.76            | sabbia-sabbia limosa                                  | 23.30 | ***************************************      | 1      |                 | Addensata                                      | 70.1                                     | 38.2                              |                                |      | 429.5                                      | 256                                                        |  |
|                            |                    |               |            |                 |                                                       |       |                                              |        |                 |                                                |                                          |                                   |                                |      |                                            |                                                            |  |
|                            |                    |               |            |                 |                                                       |       |                                              |        |                 |                                                |                                          |                                   |                                |      |                                            |                                                            |  |
|                            |                    |               |            |                 |                                                       |       |                                              |        |                 |                                                |                                          |                                   |                                |      |                                            |                                                            |  |
|                            |                    |               |            |                 |                                                       |       |                                              |        |                 |                                                |                                          |                                   |                                |      |                                            |                                                            |  |
|                            |                    |               |            |                 |                                                       |       |                                              |        |                 |                                                |                                          |                                   |                                |      |                                            |                                                            |  |


Comune Faenza
Via Monte Sant'Andrea
Localita' Granarolo Faentina
Committente Granfrutta Zani
Data 24/01/2012

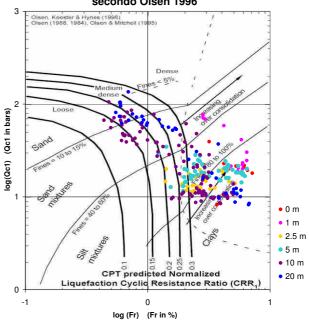
Numero prova 1 Quota falda 2.10




S.G.T. sas. di Van Zulphen Albert & C. Via Matteotti 50 48012 Bagnacavallo (RA) www.geo55.com


#### Cross-plot Qc1N verso Fr (Robertson 1990)




### Cross-plot Qc1N verso Bq (Robertson 1990)



#### Cross-plot Qc1N verso Fr per la verifica della liquefazione secondo Robertson 1996



#### Cross-plot Qc1N verso Fr per la verifica della liquefazione secondo Olsen 1996



#### Litotipo secondo Robertson 1990

| Litotipo secondo nobertson 1990 |                                       |  |  |  |  |  |  |
|---------------------------------|---------------------------------------|--|--|--|--|--|--|
| Zone                            | Tipo di comportamento                 |  |  |  |  |  |  |
|                                 |                                       |  |  |  |  |  |  |
| 9                               | Terreni molto duri a grana fine       |  |  |  |  |  |  |
| 8                               | Sabbia molto densa e sabbia argillosa |  |  |  |  |  |  |
| 7                               | Sabbia ghiaosa – sabbia densa         |  |  |  |  |  |  |
| 6                               | Sabbia – sabbia limosa                |  |  |  |  |  |  |
| 5                               | Sabbia limosa – limo sabbioso         |  |  |  |  |  |  |
| 4                               | Limo argilloso – argilla limosa       |  |  |  |  |  |  |
| 3                               | Argilla limoso – argilla              |  |  |  |  |  |  |
| 2                               | Torba                                 |  |  |  |  |  |  |
| 1                               | Terreni fini sensitivi                |  |  |  |  |  |  |

Potenziale di liquefacibilita

| i oteriziale c | ar ilqueracionita                                                                                                                               |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Zone A         | Liquefazione ciclica possibile -<br>dipendente da ampiezza e tempo<br>del carico ciclico.                                                       |
| Zone B         | Liquefazione improbabile.                                                                                                                       |
| Zone C         | Liquefazione fluida<br>e liquefazione ciclica possibile -<br>dipendente da plasticità e sensitività,<br>da ampiezza e tempo del carico ciclico. |

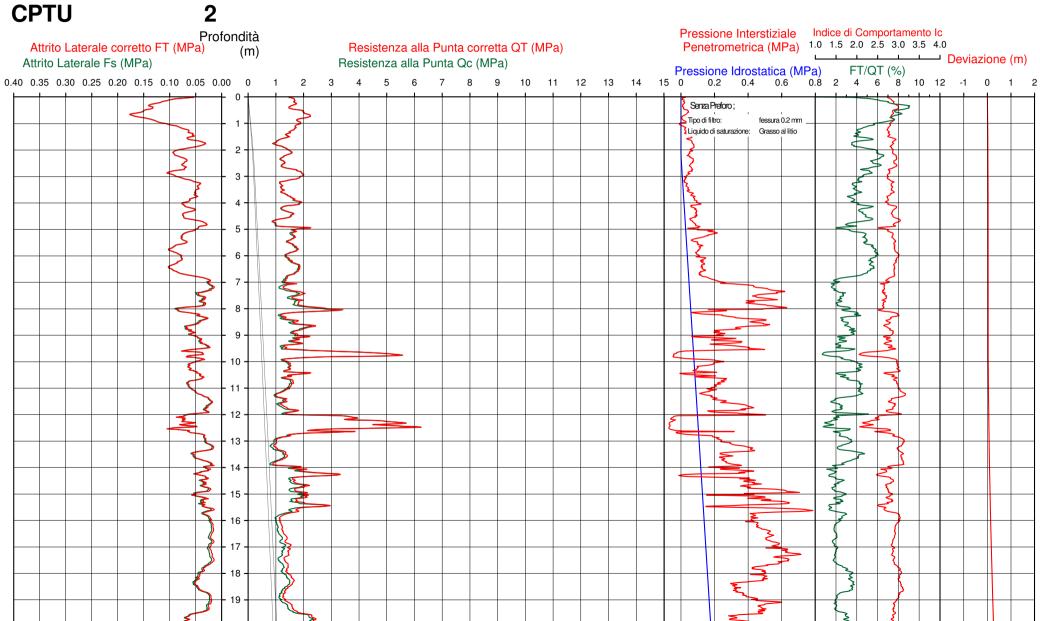
Comune Via Localita' Committente Data

Faenza Monte Sant'Andrea Granarolo Faentina Granfrutta Zani 24-gen-12

Falda 2.20 m

Sigla della Punta Tecnopenta 010104

Azzeramento Inizio prova 26-set-2011 Ultimo taratura quadagno Ultimo taratura per deriva termica 31-mar-2011




S.G.T. sas di Van Zutphen Albert & C.

Via Matteotti 50 48012 Bagnacavallo (RA)

www.geo55.com







#### CPTU 2

24 gennaio 2012 Monte Sant'Andrea Granarolo Faentina Faenza 2.20 Data Cantiere / Via Località
Comune
Profondità falda idrica m.

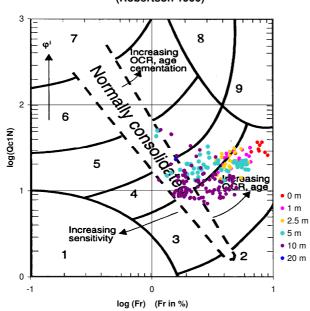
| Profon |                    | lda idri | ca m.   |      | 2.20                                             |               |                                                     |   |                                                |                                          |                                   |                                |                          |                                            | 175                                                        |
|--------|--------------------|----------|---------|------|--------------------------------------------------|---------------|-----------------------------------------------------|---|------------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------|--------------------------|--------------------------------------------|------------------------------------------------------------|
|        | Qc1N<br>Idriss & E |          | FT/Qnet |      | Litologia Robertson 1990<br>basato su Fr vs Qc1N | <b>H</b><br>m | Litologia grafica Falda<br>idrica                   |   | Addensamento (Sabbia)<br>Consistenza (Argilla) | Densità<br>Relativa<br>Tatsuoka 199<br>% | Angolo<br>Attrito o'<br>Robertson | Coesione<br>Benassi<br>daN/cmq | OCR<br>0.20<br>Robertson | Modulo<br>Edometrico<br>Benassi<br>daN/cmq | Velocità Vs<br>Baldi (sabbie),<br>Mayne & Rix (an<br>m/sec |
| 16.3   | 27.7               | 1.19     | 7.3     | 2.90 | limo argilloso-argilla limosa                    |               | =::=::=::= <br>=::=::=::= <br>=::=::=::= <br>==::=: | Ī | Plastica                                       |                                          |                                   | 0.94                           |                          | 89.5                                       | 181                                                        |
| 21.1   | 35.8               | 1.62     | 7.7     | 2.85 | limo argilloso-argilla limosa                    |               |                                                     | : | Solido-plastica (Duro)                         |                                          |                                   | 1.11                           |                          | 114.5                                      | 212                                                        |
| 16.2   | 27.5               | 0.84     | 5.2     | 2.80 | limo argilloso-argilla limosa                    | 0.80          |                                                     | Ī | Plastica                                       |                                          |                                   | 0.93                           |                          | 92.1                                       | 178                                                        |
| 10.7   | 18.2               | 0.41     | 4.0     | 2.86 | limo argilloso-argilla limosa                    | 1.60          | -:-:-:-:-:-<br>=::=::=::= <br>=::=::=::=            | 1 | Plastica                                       |                                          |                                   | 0.69                           |                          | 61.9                                       | 138                                                        |
| 13.5   | 22.9               | 0.77     | 5.9     | 2.90 | limo argilloso-argilla limosa                    | 1.90          | #:::::::::::::::::::::::::::::::::::::              |   | Plastica                                       |                                          |                                   | 0.82                           |                          | 75.9                                       | 160                                                        |
| 18.6   | 29.6               | 0.88     | 4.9     | 2.76 | limo argilloso-argilla limosa                    | 2.70          | =::=::=::= <br>=::=::=::= <br>=::=::=::=            | Ī | Plastica                                       |                                          |                                   | 1.02                           |                          | 106.6                                      | 196                                                        |
| 12.6   | 20.0               | 0.49     | 4.1     | 2.84 | limo argilloso-argilla limosa                    |               |                                                     | Ī | Plastica                                       |                                          |                                   | 0.78                           |                          | 72.9                                       | 154                                                        |
| 16.9   | 24.9               | 0.62     | 3.8     | 2.75 | limo argilloso-argilla limosa                    |               | =::=::=::=<br>=::=::=::=<br>=::=::=::=              | Ī | Plastica                                       |                                          |                                   | 0.96                           |                          | 98.3                                       | 185                                                        |
| 14.1   | 20.2               | 0.66     | 5.0     | 2.89 | limo argilloso-argilla limosa                    |               |                                                     | Ī | Plastica                                       |                                          |                                   | 0.84                           |                          | 80.6                                       | 164                                                        |
| 9.7    | 13.9               | 0.40     | 4.6     | 2.99 | argilla-argilla limosa                           | 4.80          | ==;==                                               | Ī | Molle-plastica (Soffice)                       |                                          |                                   | 0.64                           | 2.86                     | 55.9                                       | 131                                                        |
| 16.2   | 21.2               |          |         |      | limo argilloso-argilla limosa                    | 5.90          |                                                     |   | Plastica                                       |                                          |                                   | 0.93                           |                          | 92.7                                       | 178                                                        |
| 14.1   | 17.6               |          |         |      | argilla-argilla limosa                           | 6.10          | ==;== <br>==;==                                     | L | Plastica                                       |                                          |                                   | 0.84                           | 3.57                     | 79.0                                       | 165                                                        |
| 17.3   | 20.8               | 0.88     | 5.5     | 2.91 | limo argilloso-argilla limosa                    | 6.70          |                                                     |   | Plastica                                       |                                          |                                   | 0.97                           |                          | 98.0                                       | 187                                                        |
| 14.2   | 16.7               | 0.33     | 2.5     | 2.76 | limo argilloso-argilla limosa                    | 7.10          |                                                     |   | Plastica                                       |                                          |                                   | 0.85                           |                          | 70.7                                       | 166                                                        |
| 13.6   | 15.6               |          | 1.4     |      | limo argilloso-argilla limosa                    | 7.30          | -:-:-:-                                             |   | Plastica                                       |                                          |                                   | 0.82                           |                          | 47.7                                       | 161                                                        |
| 18.2   | 20.3               | 0.36     | 2.1     | 2.66 | limo argilloso-argilla limosa                    | 7.90          |                                                     |   | Plastica                                       |                                          |                                   | 1.01                           |                          | 78.4                                       | 193                                                        |
| 28.0   | 30.2               | 0.77     | 2.9     | 2.61 | limo argilloso-argilla limosa                    |               | =:;=:;=::=                                          | 1 | Solido-plastica (Duro)                         |                                          |                                   | 1.31                           |                          | 158.0                                      | 251                                                        |
| 15.2   | 16.3               | 0.43     | 3.2     | 2.84 | limo argilloso-argilla limosa                    |               |                                                     | Ī | Plastica                                       |                                          |                                   | 0.89                           |                          | 89.0                                       | 172                                                        |
| 21.7   | 22.6               | 0.64     | 3.2     | 2.73 | limo argilloso-argilla limosa                    |               | =::=::=                                             | 1 | Solido-plastica (Duro)                         |                                          |                                   | 1.13                           |                          | 126.5                                      | 215                                                        |
| 17.4   | 17.6               | 0.45     | 2.9     | 2.79 | limo argilloso-argilla limosa                    |               |                                                     | Ī | Plastica                                       |                                          |                                   | 0.98                           |                          | 96.8                                       | 187                                                        |
| 47.2   | 46.6               | 0.48     | 1.1     | 2.19 | sabbia limosa-limo sabbioso                      |               | =::=::=::= <br>::::=:::=:::=::::                    | ļ | Mediamente Addensata                           | 41.8                                     | 36.1                              |                                |                          | 156.0                                      | 225                                                        |
| 19.2   | 18.8               |          |         |      | limo argilloso-argilla limosa                    | 9.80          | ::::=:::= <br>=::=::=::=                            |   | Plastica                                       |                                          |                                   | 1.04                           |                          | 104.3                                      | 200                                                        |
| 14.5   | 13.9               |          |         |      | argilla-argilla limosa                           |               | :                                                   |   | Plastica                                       |                                          |                                   | 0.86                           | 2.39                     | 83.7                                       | 168                                                        |



#### **CPTU** 2

24 gennaio 2012 Monte Sant'Andrea Granarolo Faentina Faenza 2.20 Data Cantiere / Via Località
Comune
Profondità falda idrica m.

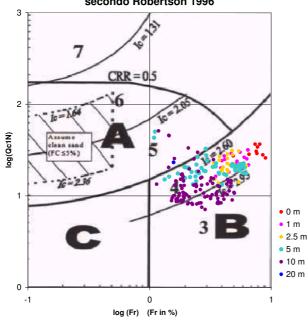
| Profo         | ndità fa         | lda idri | ca m.  |                   | 2.20                                                         |        |                                                               |                 |                                                |                                          |                                   |                                |                          |                                            | 175                                                            |
|---------------|------------------|----------|--------|-------------------|--------------------------------------------------------------|--------|---------------------------------------------------------------|-----------------|------------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------|--------------------------|--------------------------------------------|----------------------------------------------------------------|
| QT<br>daN/cmc | Qc1N<br>Idriss & |          | FT/Qne | t Ic<br>Robertson | Litologia Robertson 1990<br>basato su Fr vs Qc1N             | H<br>m | Litologia grafica                                             | Falda<br>idrica | Addensamento (Sabbia)<br>Consistenza (Argilla) | Densità<br>Relativa<br>Tatsuoka 199<br>% | Angolo<br>Attrito o'<br>Robertson | Coesione<br>Benassi<br>daN/cmq | OCR<br>0.20<br>Robertson | Modulo<br>Edometrico<br>Benassi<br>daN/cmq | Velocità Vs<br>Baldi (sabbie),<br>Mayne & Rix (argill<br>m/sec |
|               |                  |          |        |                   |                                                              | 10.40  | ==;== <br>==;== <br>==;==                                     |                 |                                                |                                          |                                   |                                |                          |                                            |                                                                |
| 16.2          | 15.2             | 0.41     | 2.9    | 2.85              | limo argilloso-argilla limosa                                |        | =::=::=::=                                                    |                 | Plastica                                       |                                          |                                   | 0.93                           |                          | 92.4                                       | 178                                                            |
| 13.5          | 12.3             | 0.51     | 4.4    | 3.02              | argilla-argilla limosa                                       | 10.70  | =::=::=::= <br>==::== <br>==::== <br>==::== <br>==::==        |                 | Plastica                                       |                                          |                                   | 0.82                           | 2.04                     | 78.0                                       | 159                                                            |
| 14.0          | 12.4             | 0.25     | 2.1    | 2.83              | limo argilloso-argilla limosa                                | 11.40  |                                                               |                 | Plastica                                       |                                          |                                   | 0.84                           |                          | 59.8                                       | 163                                                            |
| 14.4          | 12.6             | 0.46     | 3.8    | 2.96              | argilla-argilla limosa                                       | 11.90  | =::=::=::=                                                    |                 | Plastica                                       |                                          |                                   | 0.86                           | 2.05                     | 83.8                                       | 167                                                            |
| 45.9          |                  |          |        |                   | sabbia limosa-limo sabbioso                                  |        |                                                               |                 | Mediamente Addensata                           | 37.6                                     | 34.8                              |                                |                          | 176.1                                      | 265                                                            |
| 24.5          | 21.0             | 0.61     | 2.8    | 2.74              | limo argilloso-argilla limosa                                |        | =::=::=::= <br>=::=::=::= <br>=::=::=::=                      |                 | Solido-plastica (Duro)                         |                                          |                                   | 1.21                           |                          | 132.4                                      | 224                                                            |
| 11.3          | 9.1              | 0.33     | 3.6    | 3.07              | argilla-argilla limosa                                       |        |                                                               |                 | Plastica                                       |                                          |                                   | 0.72                           | 1.36                     | 65.9                                       | 142                                                            |
| 18.7          | 14.9             | 0.29     | 1.8    | 2.74              | limo argilloso-argilla limosa                                | 13.30  | =::=::=:= <br>=::=::=:=                                       |                 | Plastica                                       |                                          |                                   | 1.03                           |                          | 73.6                                       | 196                                                            |
| 31.4          | 25.5             | 0.46     | 1.6    | 2.51              | sabbia limosa-limo sabbioso                                  | 14.20  | =::=::=::=                                                    |                 | Sciolta                                        | 21.9                                     | 31.6                              |                                |                          | 116.4                                      | 258                                                            |
| 18.2          |                  |          |        |                   | limo argilloso-argilla limosa                                |        |                                                               |                 | Plastica                                       | 21.0                                     | 01.0                              | 1.01                           |                          | 74.4                                       | 193                                                            |
| 20.0          | 15.3             | 0.39     | 2.3    | 2.78              | limo argilloso-argilla limosa                                |        | =::=::=::=<br>=::=::=::=<br>=::=::=::=<br>=::=::=             |                 | Solido-plastica (Duro)                         |                                          |                                   | 1.07                           |                          | 91.4                                       | 205                                                            |
| 26.5<br>17.7  |                  |          |        |                   | sabbia limosa-limo sabbioso<br>limo argilloso-argilla limosa | 15.50  | ::::=:::=:::: <br>=::=::=::=                                  |                 | Molto Sciolta<br>Plastica                      | 14.5                                     | 30.0                              | 0.99                           |                          | 94.3<br>63.6                               | 242<br>190                                                     |
| 12.1          |                  |          |        |                   | argilla-argilla limosa                                       |        | =::=::= <br>==::= <br>==::= <br>=::=                          |                 | Plastica                                       |                                          |                                   | 0.75                           | 1.23                     | 60.8                                       | 149                                                            |
| 13.3          | 9.4              | 0.18     | 1.8    | 2.90              | limo argilloso-argilla limosa                                |        |                                                               |                 | Plastica                                       |                                          |                                   | 0.81                           |                          | 51.3                                       | 159                                                            |
| 14.1          | 9.7              | 0.19     | 1.8    | 2.88              | limo argilloso-argilla limosa                                |        |                                                               |                 | Plastica                                       |                                          |                                   | 0.84                           |                          | 54.3                                       | 165                                                            |
| 15.0          | 10.0             | 0.43     | 3.6    | 3.04              | argilla-argilla limosa                                       |        |                                                               |                 | Plastica                                       |                                          |                                   | 0.88                           | 1.42                     | 87.2                                       | 171                                                            |
| 13.0          | 8.4              | 0.25     | 2.6    | 3.03              | argilla-argilla limosa                                       |        | ==;== <br>==;== <br>==;==                                     |                 | Plastica                                       |                                          |                                   | 0.80                           | 1.13                     | 66.6                                       | 157                                                            |
| 15.9          | 10.3             | 0.26     | 2.1    | 2.90              | limo argilloso-argilla limosa                                |        | ==:==;<br>=::=::=::=<br>=::=::=::=<br>=::=::=::=<br>=::=::    |                 | Plastica                                       |                                          |                                   | 0.92                           |                          | 68.0                                       | 178                                                            |
| 24.7          | 16.3             | 0.61     | 3.0    | 2.82              | limo argilloso-argilla limosa                                |        | -:-::=::=<br>=::=::=::=<br>=::=::=::=<br>=::=::=::=<br>=::=:: |                 | Solido-plastica (Duro)                         |                                          |                                   | 1.22                           |                          | 142.3                                      | 233                                                            |
| 34.2          | 23.2             | 0.48     | 1.6    | 2.54              | sabbia limosa-limo sabbioso                                  |        | :::=:::=:::                                                   |                 | Sciolta                                        | 18.7                                     | 30.4                              |                                | Ī                        | 126.1                                      | 278                                                            |


Comune Faenza
Via Monte Sant'Andrea
Localita' Granarolo Faentina
Committente Granfrutta Zani
Data 24-gen-12

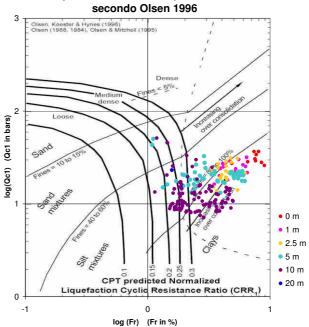
Numero prova **2** Quota falda 2.20




S.G.T. sas. di Van Zulphen Albert & C. Via Matteotti 50 48012 Bagnacavallo (RA) www.geo55.com







#### Cross-plot Qc1N verso Bq (Robertson 1990)



#### Cross-plot Qc1N verso Fr per la verifica della liquefazione secondo Robertson 1996



Cross-plot Qc1N verso Fr per la verifica della liquefazione



#### Litotipo secondo Robertson 1990

| Litotipo secondo Robertson 1990 |                                       |  |  |  |  |  |  |
|---------------------------------|---------------------------------------|--|--|--|--|--|--|
| Zone                            | Tipo di comportamento                 |  |  |  |  |  |  |
|                                 |                                       |  |  |  |  |  |  |
| 9                               | Terreni molto duri a grana fine       |  |  |  |  |  |  |
| 8                               | Sabbia molto densa e sabbia argillosa |  |  |  |  |  |  |
| 7                               | Sabbia ghiaosa – sabbia densa         |  |  |  |  |  |  |
| 6                               | Sabbia – sabbia limosa                |  |  |  |  |  |  |
| 5                               | Sabbia limosa – limo sabbioso         |  |  |  |  |  |  |
| 4                               | Limo argilloso – argilla limosa       |  |  |  |  |  |  |
| 3                               | Argilla limoso – argilla              |  |  |  |  |  |  |
| 2                               | Torba                                 |  |  |  |  |  |  |
| 1                               | Terreni fini sensitivi                |  |  |  |  |  |  |

Potenziale di liquefacibilita

| r oteriziale t | ai iiqueracioiiita                                                                                                                              |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Zone A         | Liquefazione ciclica possibile -<br>dipendente da ampiezza e tempo<br>del carico ciclico.                                                       |
| Zone B         | Liquefazione improbabile.                                                                                                                       |
| Zone C         | Liquefazione fluida<br>e liquefazione ciclica possibile -<br>dipendente da plasticità e sensitività,<br>da ampiezza e tempo del carico ciclico. |

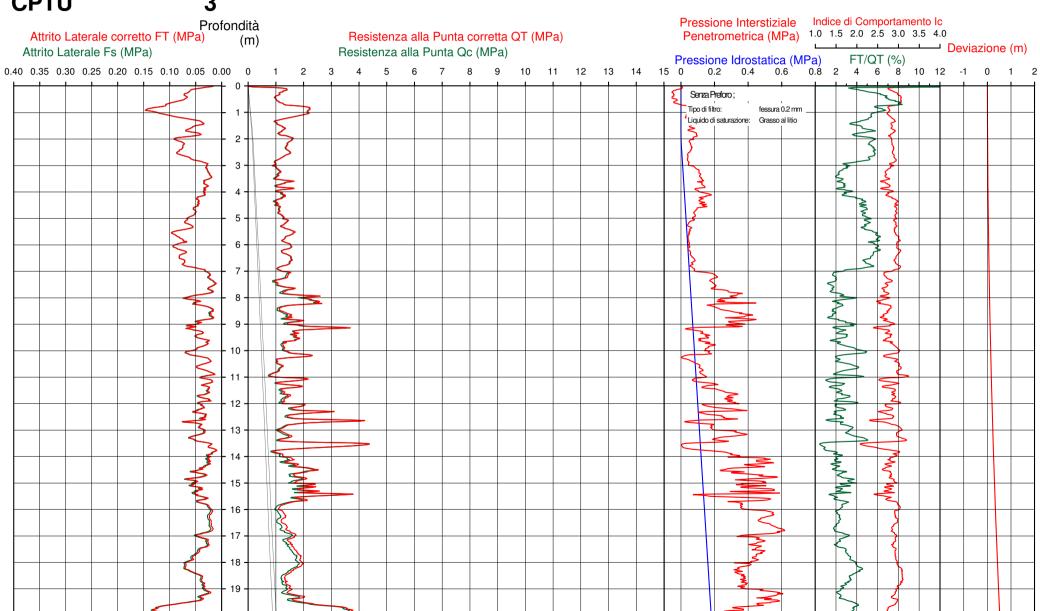
Comune Via Localita' Committente Data

Faenza Monte Sant'Andrea Granarolo Faentina Granfrutta Zani 24-gen-12

Falda 2.00 m

Sigla della Punta Tecnopenta 010104

Azzeramento Inizio prova Ultimo taratura quadagno 26-set-2011 Ultimo taratura per deriva termica 31-mar-2011




S.G.T. sas di Van Zutphen Albert & C.

Via Matteotti 50 48012 Bagnacavallo (RA)

www.geo55.com







48012 Bagnacavallo (RA)

#### CPTU 3

24 gennaio 2012 Monte Sant'Andrea Granarolo Faentina Faenza 2.00 Data Cantiere / Via Località
Comune
Profondità falda idrica m.

| Profon       |                    | lda idri     | ca m.      |      | 2.00                                                           |        |                           |                 |                                                |                                     |                                                  |                                |                          |                                            | 168                                                          |
|--------------|--------------------|--------------|------------|------|----------------------------------------------------------------|--------|---------------------------|-----------------|------------------------------------------------|-------------------------------------|--------------------------------------------------|--------------------------------|--------------------------|--------------------------------------------|--------------------------------------------------------------|
|              | Qc1N<br>Idriss & E |              | FT/Qne     |      | Litologia Robertson 1990<br>basato su Fr vs Qc1N               | H<br>m | Litologia grafica         | Falda<br>idrica | Addensamento (Sabbia)<br>Consistenza (Argilla) | Densità<br>Relativa<br>Tatsuoka 199 | Angolo<br>Attrito o'<br>Robertson                | Coesione<br>Benassi<br>daN/cmq | OCR<br>0.20<br>Robertson | Modulo<br>Edometrico<br>Benassi<br>daN/cmq | Velocità Vs<br>Baldi (sabbie),<br>Mayne & Rix (argi<br>m/sec |
| 7.3          | 12.4               |              |            | 3.45 | argilla-argilla limosa                                         |        | ==:==                     |                 | Molle-plastica (Soffice)                       |                                     |                                                  | 0.51                           | 148.15                   | 12.1                                       | 109                                                          |
| 12.5         | 21.3               |              |            |      | limo argilloso-argilla limosa                                  |        |                           |                 | Plastica                                       |                                     |                                                  | 0.77                           |                          | 71.3                                       | 153                                                          |
| 10.7         | 18.3               | 0.80         | 7.5        | 3.04 | argilla-argilla limosa                                         | 0.50   | ==:== <br> ==:==          |                 | Plastica                                       |                                     |                                                  | 0.69                           | 23.24                    | 58.7                                       | 139                                                          |
|              |                    |              |            |      |                                                                | 0.70   | ==;==                     |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
| 20.7         | 35.2               | 1.25         | 6.1        | 2.78 | limo argilloso-argilla limosa                                  | 0.70   | ==:== <br>=::=::=         |                 | Solido-plastica (Duro)                         |                                     |                                                  | 1.10                           |                          | 116.3                                      | 209                                                          |
|              |                    |              |            |      |                                                                |        | =;:=;:=;:= <br>=::=::=::= |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
| 12.5         | 21.2               | 0.56         | 4.5        | 2.85 | limo argilloso-argilla limosa                                  | 1.10   | =;;=;;=;;= <br>=;;=;;=;;= |                 | Plastica                                       | -                                   |                                                  | 0.77                           |                          | 71.7                                       | 151                                                          |
|              |                    |              |            |      |                                                                |        | =::=::=::=                |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
|              |                    |              |            |      |                                                                |        | =::=::=::=                |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
|              |                    |              |            |      |                                                                |        | =::=::=::=                |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
|              |                    |              |            |      |                                                                | 1.90   | =::=::=::=                |                 | B) (                                           |                                     |                                                  |                                |                          |                                            |                                                              |
| 14.7         | 25.1               | 0.80         | 5.6        | 2.85 | limo argilloso-argilla limosa                                  |        | =::=::=::= <br>=::=::=::= | <u>H2O</u>      | Plastica                                       |                                     |                                                  | 0.87                           |                          | 83.6                                       | 170                                                          |
|              |                    |              |            |      |                                                                |        | =;:=;:=;:= <br>=::=::=::= |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
|              |                    |              |            |      |                                                                |        | =::=::=::=                |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
| 12.1         | 20.6               | 0.63         | 5.4        | 2.01 | limo argilloso-argilla limosa                                  | 2.60   | =::=::=::= <br>=::=::=::= |                 | Plastica                                       |                                     |                                                  | 0.76                           |                          | 68.8                                       | 150                                                          |
|              |                    |              |            |      |                                                                | 2.80   | =::=::=::=                |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
| 9.8          | 16.7               | 0.32         | 3.5        | 2.85 | limo argilloso-argilla limosa                                  |        | =::=::=::= <br>=::=::=::= |                 | Molle-plastica (Soffice)                       |                                     |                                                  | 0.64                           |                          | 57.0                                       | 131                                                          |
| 10.9         | 18.5               | 0.24         | 2.3        | 2.71 | limo argilloso-argilla limosa                                  | 3.10   | =;:=;:=;:= <br>=::=::=::= |                 | Plastica                                       |                                     |                                                  | 0.70                           |                          | 49.8                                       | 140                                                          |
|              |                    |              |            |      |                                                                |        | =::=::=::= <br>=::=::=::= |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
| 13.0         | 20.9               | 0.31         | 2.5        | 2 70 | limo argilloso-argilla limosa                                  | 3.50   | =::=::=::=                |                 | Plastica                                       |                                     |                                                  | 0.80                           |                          | 64.3                                       | 156                                                          |
| 10.0         | 20.0               | 0.01         | 2.0        | 2.70 | and argine argina inneca                                       |        | =::=::=::=                |                 | - Idoliod                                      |                                     |                                                  | 0.00                           |                          | 01.0                                       | 100                                                          |
|              |                    |              |            |      |                                                                | 3.90   | =::=::=::=                |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
| 11.4         | 17.4               | 0.44         | 4.2        | 2.89 | limo argilloso-argilla limosa                                  |        | =::=::=::= <br>=::=::=::= |                 | Plastica                                       |                                     |                                                  | 0.72                           |                          | 65.9                                       | 144                                                          |
|              |                    |              |            |      |                                                                |        | =::=::=::=                |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
|              |                    |              |            |      |                                                                |        | ==:==                     |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
|              |                    |              |            |      |                                                                |        | =::=::=::=                |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
|              |                    |              |            |      |                                                                |        | =::=::=!                  |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
| 14.0         | 19.5               | 0.70         | 5.3        | 2.92 | limo argilloso-argilla limosa                                  | 4.90   | =::=::=::=                |                 | Plastica                                       |                                     |                                                  | 0.84                           |                          | 79.8                                       | 164                                                          |
|              |                    |              |            |      |                                                                |        | =;:=;:=;:= <br>=;:=;:=;:= |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
|              |                    |              |            |      |                                                                |        | =::=::=::=                |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
|              |                    |              |            |      |                                                                | 5.60   | =;;=;;=;=                 |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
| 13.9         | 18.1               | 0.80         | 6.3        | 2.99 | argilla-argilla limosa                                         | 0.00   | ==:== <br>==:==           |                 | Plastica                                       |                                     |                                                  | 0.83                           | 3.74                     | 77.7                                       | 163                                                          |
|              |                    |              |            |      |                                                                |        | :                         |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
|              |                    |              |            |      |                                                                |        | ==:== <br>==:==           |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
|              |                    |              |            |      |                                                                |        | ==:==                     |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
| 15.5         | 19.2               | 0.76         | 5.3        | 2.93 | limo argilloso-argilla limosa                                  | 6.40   | ==:== <br>=::=::=         |                 | Plastica                                       |                                     |                                                  | 0.90                           |                          | 88.0                                       | 175                                                          |
|              |                    |              |            |      |                                                                | 6.70   | =::=::=::=                |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
| 12.5         | 15.5               | 0.63         | 5.6        | 3.01 | argilla-argilla limosa                                         |        | ==:== <br> ==:==          |                 | Plastica                                       |                                     |                                                  | 0.78                           | 3.01                     | 71.1                                       | 152                                                          |
| 13.5         | 16.3               | 0.27         | 2.3        | 2.75 | limo argilloso-argilla limosa                                  | 0.90   | =::=::=::=                |                 | Plastica                                       |                                     |                                                  | 0.82                           |                          | 61.5                                       | 160                                                          |
|              |                    |              |            |      |                                                                | 7.20   | =::=::=::= <br>=::=::=::= |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
| 11.5         | 13.7               | 0.18         | 1.7        | 2.75 | limo argilloso-argilla limosa                                  |        | =::=::=::= <br>=::=::=::= |                 | Plastica                                       |                                     |                                                  | 0.73                           |                          | 43.9                                       | 144                                                          |
|              |                    |              |            |      |                                                                | 7.60   | =;;=;;=;;= <br>=;;=;;=;;= |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
| 16.0<br>14.2 | 18.5<br>16.3       |              |            |      | limo argilloso-argilla limosa<br>limo argilloso-argilla limosa |        | =::=::=::=                |                 | Plastica<br>Plastica                           |                                     |                                                  | 0.92<br>0.85                   |                          | 60.4<br>56.9                               | 179<br>165                                                   |
| 22.6         | 25.3               |              |            |      | limo argilloso-argilla limosa                                  | 7.90   | =::=::=::= <br>=::=::=::= |                 | Solido-plastica (Duro)                         |                                     |                                                  | 1.16                           |                          | 127.4                                      | 222                                                          |
|              |                    |              |            |      |                                                                |        | =::=::=::=                |                 |                                                | 05.5                                | 20.0                                             | 1.10                           |                          |                                            |                                                              |
| 25.3<br>14.4 | 28.0<br>16.0       |              | 1.9<br>2.1 |      | sabbia limosa-limo sabbioso<br>limo argilloso-argilla limosa   | 8.20   | =::=::=::=                |                 | Sciolta<br>Plastica                            | 25.0                                | 33.3                                             | 0.86                           |                          | 103.3<br>62.9                              | 227<br>162                                                   |
|              |                    |              | <u></u>    |      |                                                                |        | =::=::=::= <br>=::=::=::= |                 |                                                |                                     | <u></u>                                          |                                |                          |                                            |                                                              |
| 13.4<br>15.0 | 14.7<br>16.3       | 0.21<br>0.18 | 1.7<br>1.4 |      | limo argilloso-argilla limosa<br>limo argilloso-argilla limosa |        | =;;=;;=;=                 |                 | Plastica<br>Plastica                           | +                                   |                                                  | 0.81<br>0.88                   |                          | 51.5<br>52.4                               | 160<br>171                                                   |
| 18.0         | 19.3               |              | 2.9        |      | limo argilloso-argilla limosa                                  | 8.80   | =::=::=::=                |                 | Plastica                                       |                                     | <u> </u>                                         | 1.00                           |                          | 102.0                                      | 191                                                          |
| 10.0         | 13.3               | 0.47         | 2.9        | 2.70 | arginoso-argina IIIIIOSa                                       | 0.10   | =;;=;;=                   |                 |                                                |                                     |                                                  | 1.00                           |                          | 102.0                                      | 131                                                          |
| 30.7         | 32.1               | 0.62         | 2.2        |      | sabbia limosa-limo sabbioso                                    | 9.10   |                           |                 | Sciolta                                        | 29.5                                | 34.0                                             |                                |                          | 134.8                                      | 252                                                          |
| 17.1         | 17.9               | 0.44         | 2.8        | 2.78 | limo argilloso-argilla limosa                                  |        | =;:=;:=;:= <br>=;:=::=::= |                 | Plastica                                       |                                     |                                                  | 0.97                           |                          | 94.5                                       | 187                                                          |
| 14.3         | 14.6               | 0.41         | 3.4        | 2.88 | limo argilloso-argilla limosa                                  | 9.50   | =::=::=::=                |                 | Plastica                                       | 1                                   | <del>                                     </del> | 0.85                           |                          | 83.5                                       | 165                                                          |
| 5            |                    |              |            |      |                                                                |        | =::=::=::=                |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
|              |                    |              |            |      |                                                                |        | =::=::=::=                |                 |                                                |                                     |                                                  |                                |                          |                                            |                                                              |
|              | l                  | l            | l          | I    | I                                                              |        | ==:==                     |                 | I                                              | 1                                   | 1                                                | l                              | İ                        | 1                                          | 1                                                            |

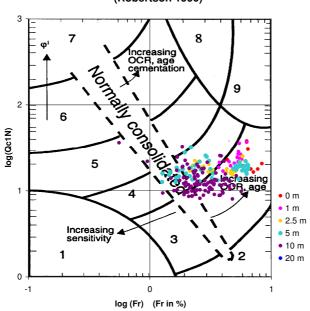


48012 Bagnacavallo (RA)

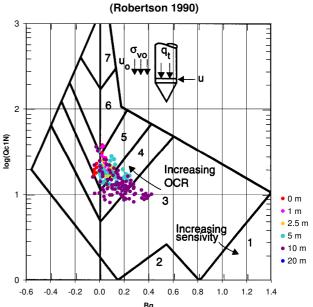
#### **CPTU** 3

Data Cantiere / Via 24 gennaio 2012 Monte Sant'Andrea Granarolo Faentina Località Comune Profondità falda idrica m. Faenza

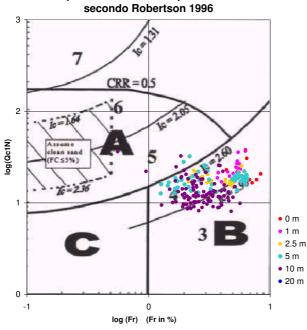
|              | ofondità falda idrica m. |               | Litologia Robertson 1990 |                 |                                                                |               |                                               |                 | Angolo                                         |                                          | OCR                                              | Modulo                         | 168<br>Velocità Vs |                                  |                                            |
|--------------|--------------------------|---------------|--------------------------|-----------------|----------------------------------------------------------------|---------------|-----------------------------------------------|-----------------|------------------------------------------------|------------------------------------------|--------------------------------------------------|--------------------------------|--------------------|----------------------------------|--------------------------------------------|
| T<br>iN/cmq  | Qc1N<br>Idriss & E       | FT<br>daN/cmq | FT/Qnet                  | Ic<br>Robertson | Litologia Hobertson 1990<br>basato su Fr vs Qc1N               | H<br>m        | Litologia grafica                             | Falda<br>idrica | Addensamento (Sabbia)<br>Consistenza (Argilla) | Densità<br>Relativa<br>Tatsuoka 199<br>% | Attrito ø'                                       | Coesione<br>Benassi<br>daN/cmq | 0.20<br>Robertson  | Edometrico<br>Benassi<br>daN/cmq | Baldi (sabbie),<br>Mayne & Rix (a<br>m/sec |
|              |                          |               |                          |                 | -                                                              | 10.10         | ==:==                                         |                 |                                                |                                          |                                                  |                                |                    |                                  |                                            |
| 18.8         |                          | 0.45          | 2.6                      |                 | limo argilloso-argilla limosa                                  | 10.30         | =;;=;;=;;= <br>=;;=;;=;;=                     |                 | Plastica                                       |                                          |                                                  | 1.03                           |                    | 96.5                             | 196                                        |
| 10.5         | 10.3                     | 0.25          | 2.9                      | 2.97            | argilla-argilla limosa                                         | 10.50         | ==;== <br>==;==                               |                 | Plastica                                       |                                          |                                                  | 0.68                           | 1.69               | 58.3                             | 137                                        |
| 12.2<br>11.4 |                          | 0.43          | 4.2<br>3.8               | 3.02            | argilla-argilla limosa<br>argilla-argilla limosa               | 10.60         | ==;==                                         |                 | Plastica<br>Plastica                           |                                          |                                                  | 0.76<br>0.72                   | 2.00<br>1.82       | 70.6<br>66.1                     | 151<br>144                                 |
| 8.8          |                          | 0.24          | 3.5                      |                 | argilla-argilla limosa                                         | 10.80         | ==:==                                         |                 | Molle-plastica (Soffice)                       | -                                        |                                                  | 0.59                           | 1.29               | 51.0                             | 122                                        |
|              |                          |               |                          |                 |                                                                | 11.00         | ==;==                                         |                 |                                                |                                          |                                                  | 0.86                           | 1.23               | 70.3                             |                                            |
| 14.5         | 13.5                     | 0.30          | 2.5                      | 2.64            | limo argilloso-argilla limosa                                  | 12.00         |                                               |                 | Plastica                                       |                                          |                                                  | 0.86                           |                    | 70.3                             | 166                                        |
| 20.0         |                          | 0.38          | 2.1                      |                 | limo argilloso-argilla limosa                                  | 12.10         | =;;=;;=;:=                                    |                 | Solido-plastica (Duro)                         |                                          |                                                  | 1.07                           |                    | 86.2                             | 206                                        |
| 16.5<br>19.6 |                          | 0.35          | 2.5<br>2.3               |                 | limo argilloso-argilla limosa<br>limo argilloso-argilla limosa | 12.20         | =::=::=::=                                    |                 | Plastica<br>Plastica                           |                                          |                                                  | 0.94<br>1.06                   |                    | 80.3<br>90.1                     | 182<br>200                                 |
|              |                          |               |                          |                 |                                                                |               | =::=::=::=                                    |                 |                                                |                                          |                                                  |                                |                    |                                  |                                            |
| 00.1         | 00.5                     | 0.50          | 4.0                      | 0.45            | and the Process Process in Indian                              |               | =::=::=::=                                    |                 | O. Jahra                                       | 00.0                                     | 20.5                                             |                                |                    | 140.0                            | 200                                        |
| 36.1<br>13.9 | 32.5<br>11.9             | 0.59<br>0.44  | 1.8<br>3.9               |                 | sabbia limosa-limo sabbioso<br>argilla-argilla limosa          | 12.70         | ::::=:::=;::: <br>=::=::=:                    |                 | Sciolta<br>Plastica                            | 29.9                                     | 33.5                                             | 0.83                           | 1.89               | 143.3<br>80.3                    | 266<br>161                                 |
|              |                          |               |                          |                 |                                                                | 13.40         | ==;== <br>==;== <br>==;==                     |                 |                                                |                                          |                                                  |                                |                    |                                  |                                            |
| 31.1         | 26.9                     | 0.26          | 1.2                      | 2.39            | sabbia limosa-limo sabbioso                                    |               | ::::=::::=::::                                |                 | Sciolta                                        | 23.7                                     | 32.1                                             |                                |                    | 103.9                            | 225                                        |
| 11.5         | 9.4                      | 0.17          | 1.9                      | 2.91            | limo argilloso-argilla limosa                                  | 13.70         | ::::=:::=<br>=::=::=::=                       |                 | Plastica                                       | 1                                        |                                                  | 0.73                           |                    | 46.9                             | 145                                        |
|              |                          | •             |                          |                 |                                                                | 1400          | =:==                                          |                 |                                                |                                          |                                                  |                                |                    |                                  |                                            |
| 16.0         | 13.1                     | 0.26          | 1.9                      | 2.79            | limo argilloso-argilla limosa                                  | 14.00         | -::-::-::- <br> -::=::=::= <br> -::=::=::=    |                 | Plastica                                       |                                          |                                                  | 0.92                           |                    | 64.8                             | 178                                        |
|              |                          |               |                          |                 |                                                                | 14.40         | =::=::=:=                                     |                 |                                                |                                          |                                                  |                                |                    |                                  |                                            |
| 20.7         | 16.6                     | 0.46          | 2.6                      | 2.78            | limo argilloso-argilla limosa                                  | 15.40         |                                               |                 | Solido-plastica (Duro)                         |                                          |                                                  | 1.10                           |                    | 105.5                            | 208                                        |
| 30.8         | 24.7                     | 0.46          | 1.7                      | 2.54            | sabbia limosa-limo sabbioso                                    | 15.50         | :::=:::=::::                                  |                 | Sciolta                                        | 20.9                                     | 31.3                                             |                                |                    | 116.7                            | 260                                        |
| 19.1         | 14.8                     | 0.35          | 2.2                      |                 | limo argilloso-argilla limosa                                  | 15.70         | =::=::=::= <br>=::=::=::=                     |                 | Plastica                                       |                                          |                                                  | 1.04                           |                    | 84.2                             | 200                                        |
| 12.6         |                          | 0.23          | 2.4                      |                 | argilla-argilla limosa                                         | 16.50         |                                               |                 | Plastica                                       |                                          |                                                  | 0.78                           | 1.34               | 59.5                             | 153                                        |
| 14.2         | 10.3                     | 0.21          | 1.8                      | 2.87            | limo argilloso-argilla limosa                                  | 10.00         | =::=::=::= <br>=::=::=::= <br>=::=::=::=      |                 | Plastica                                       |                                          |                                                  | 0.85                           |                    | 56.2                             | 165                                        |
| 16.6         | 12.1                     | 0.42          | 3.1                      | 2.94            | limo argilloso-argilla limosa                                  |               | =::=::=:=                                     |                 | Plastica                                       |                                          |                                                  | 0.95                           |                    | 99.8                             | 183                                        |
| 16.9         | 12.0                     | 0.39          | 2.8                      | 2.91            | limo argilloso-argilla limosa                                  | 17.10         | =::=::=:= <br>=::=::=:=                       |                 | Plastica                                       | +                                        | <del>                                     </del> | 0.96                           |                    | 91.4                             | 184                                        |
|              |                          |               |                          |                 |                                                                | <u>17.</u> 90 |                                               |                 |                                                |                                          |                                                  |                                |                    |                                  |                                            |
| 18.5         | 12.9                     | 0.67          | 4.4                      | 3.01            | argilla-argilla limosa                                         | 18.30         | ==:== <br>==:== <br>==:==                     |                 | Plastica                                       |                                          |                                                  | 1.02                           | 1.91               | 106.3                            | 195                                        |
| 14.2         | 9.5                      | 0.39          | 3.6                      | 3.06            | argilla-argilla limosa                                         |               | ==;== <br>==;== <br>==;== <br>==;== <br>==;== |                 | Plastica                                       |                                          |                                                  | 0.85                           | 1.32               | 82.4                             | 165                                        |
| 16.6         | 11.0                     | 0.31          | 2.4                      | 2.91            | limo argilloso-argilla limosa                                  |               | =:== <br>=::=::= <br>=::=::= <br>=::=::=      |                 | Plastica                                       |                                          |                                                  | 0.95                           |                    | 77.7                             | 182                                        |
| 17.8         | 11.8                     | 0.49          | 3.4                      | 2.97            | argilla-argilla limosa                                         |               | =;:=;:=;:= <br>==:==                          |                 | Plastica                                       | <u> </u>                                 |                                                  | 0.99                           | 1.68               | 103.7                            | 191                                        |
| 32.0         |                          | 1.13          | 4.0                      |                 | limo argilloso-argilla limosa                                  |               |                                               |                 | Semi solida (Molto duro)                       |                                          |                                                  | 1.41                           |                    | 185.5                            | 271                                        |


Comune Faenza
Via Monte Sant'Andrea
Localita' Granarolo Faentina
Committente Granfrutta Zani
Data 24-gen-12

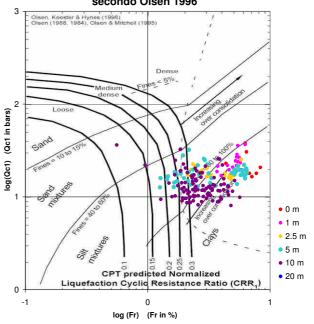
Numero prova **3** Quota falda 2.00




S.G.T. sas. di Van Zulphen Albert & C. Via Matteotti 50 48012 Bagnacavallo (RA) www.geo55.com


#### Cross-plot Qc1N verso Fr (Robertson 1990)




#### Cross-plot Qc1N verso Bq (Robertson 1990)



# Cross-plot Qc1N verso Fr per la verifica della liquefazione



#### Cross-plot Qc1N verso Fr per la verifica della liquefazione secondo Olsen 1996



#### Litotipo secondo Robertson 1990

| Litotipo secondo Robertson 1990 |                                       |  |  |  |  |  |  |  |
|---------------------------------|---------------------------------------|--|--|--|--|--|--|--|
| Zone                            | Tipo di comportamento                 |  |  |  |  |  |  |  |
|                                 |                                       |  |  |  |  |  |  |  |
| 9                               | Terreni molto duri a grana fine       |  |  |  |  |  |  |  |
| 8                               | Sabbia molto densa e sabbia argillosa |  |  |  |  |  |  |  |
| 7                               | Sabbia ghiaosa – sabbia densa         |  |  |  |  |  |  |  |
| 6                               | Sabbia – sabbia limosa                |  |  |  |  |  |  |  |
| 5                               | Sabbia limosa – limo sabbioso         |  |  |  |  |  |  |  |
| 4                               | Limo argilloso – argilla limosa       |  |  |  |  |  |  |  |
| 3                               | Argilla limoso – argilla              |  |  |  |  |  |  |  |
| 2                               | Torba                                 |  |  |  |  |  |  |  |
| 1                               | Terreni fini sensitivi                |  |  |  |  |  |  |  |

Potenziale di liquefacibilita

| Zone A | Liquefazione ciclica possibile -<br>dipendente da ampiezza e tempo<br>del carico ciclico.                                                       |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Zone B | Liquefazione improbabile.                                                                                                                       |
| Zone C | Liquefazione fluida<br>e liquefazione ciclica possibile -<br>dipendente da plasticità e sensitività,<br>da ampiezza e tempo del carico ciclico. |

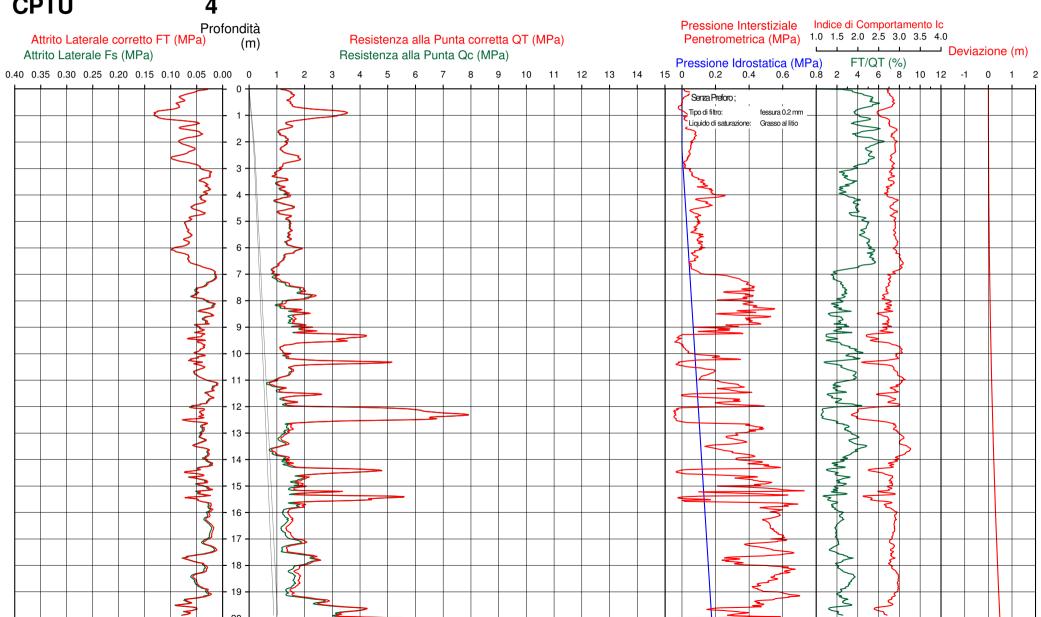
Comune Via Localita' Committente Data

Faenza Monte Sant'Andrea Granarolo Faentina Granfrutta Zani 24/01/2012

Falda 2.30 m

Sigla della Punta Tecnopenta 010104

Azzeramento Inizio prova 26-set-2011 Ultimo taratura quadagno Ultimo taratura per deriva termica 31-mar-2011




S.G.T. sas di Van Zutphen Albert & C.

Via Matteotti 50 48012 Bagnacavallo (RA)

www.geo55.com







#### CPTU 4

24/01/2012 Monte Sant'Andrea Granarolo Faentina Data Cantiere / Via Località
Comune
Profondità falda idrica m. Faenza 2.30

| roton      | idità fal          | da idri    | ca m.   |                 | 2.30                                             |        |                              |                 |                                                |                                    |                                     |                                |                          |                                            | 174                                                        |
|------------|--------------------|------------|---------|-----------------|--------------------------------------------------|--------|------------------------------|-----------------|------------------------------------------------|------------------------------------|-------------------------------------|--------------------------------|--------------------------|--------------------------------------------|------------------------------------------------------------|
| T<br>N/cmq | Qc1N<br>Idriss & E | FT daN/cma | FT/Qnet | Ic<br>Robertson | Litologia Robertson 1990<br>basato su Fr vs Qc1N | H<br>m | Litologia grafica            | Falda<br>idrica | Addensamento (Sabbia)<br>Consistenza (Argilla) | Densità<br>Relativa<br>Tatsuoka 19 | Angolo<br>Attrito o'<br>9 Robertson | Coesione<br>Benassi<br>daN/cmq | OCR<br>0.20<br>Robertson | Modulo<br>Edometrico<br>Benassi<br>daN/cmq | Velocità Vs<br>Baldi (sabbie),<br>Mayne & Rix (ar<br>m/sec |
|            | 27.3               | 0.76       | 4.7     | 0.70            | limo argilloso-argilla limosa                    | - 10   |                              |                 | Direction                                      | 76                                 |                                     | 0.93                           |                          | 92.2                                       | 177                                                        |
| 16.1       | 21.3               | 0.76       | 4.7     | 2.78            | iimo argiiioso-argiiia iimosa                    |        | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       |                                    |                                     | 0.93                           |                          | 92.2                                       | 177                                                        |
|            |                    |            |         |                 |                                                  |        | =;;=;;=;;= <br>=;;=;;=       |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  |        | =::=::=::=                   |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  |        | =::=::=::=                   |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 32.0       | 54.4               | 1.27       | 4.0     | 2.52            | sabbia limosa-limo sabbioso                      | 0.80   | =;;=;;=;:=                   |                 | Mediamente Addensata                           | 46.9                               | 43.5                                |                                |                          | 185.3                                      | 250                                                        |
| 02.0       | 0                  |            |         | 2.02            | Sabbia iiiiosa iiiio Sabbioso                    |        | :::=:::=::::                 |                 | modaliono /iodoriodia                          | 10.0                               | 10.0                                |                                |                          | 100.0                                      | 200                                                        |
| 15.8       | 26.8               | 0.72       | 4.6     | 2.78            | limo argilloso-argilla limosa                    | 1.10   | ::::=:::=:::: <br>=::=::=::= |                 | Plastica                                       |                                    | 1                                   | 0.91                           |                          | 90.6                                       | 175                                                        |
|            |                    |            |         |                 |                                                  |        | =;;=;;=;;= <br>=;;=;;=;=     |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  | 1.50   | =::=::=::=                   |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 12.4       | 21.1               | 0.62       | 5.1     | 2.88            | limo argilloso-argilla limosa                    |        | =::=::=:= <br>=::=::=::=     |                 | Plastica                                       |                                    |                                     | 0.77                           |                          | 70.7                                       | 152                                                        |
|            |                    |            |         |                 |                                                  |        | =::=::=::=                   |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  |        | =::=::=                      |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  |        | =::=::=::= <br>=::=::=::=    |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  | 2.40   | =::=::=::=                   | H2O             |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 16.4       | 27.1               | 0.84       | 5.3     | 2.81            | limo argilloso-argilla limosa                    | 2.40   | =::=::=::=                   |                 | Plastica                                       |                                    |                                     | 0.94                           |                          | 93.5                                       | 181                                                        |
|            |                    |            |         |                 |                                                  |        | =;;=;;=;;= <br>=;;=;;=       |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 44.0       | 40.0               | 0.40       | 0.0     | 0.00            | P                                                | 2.80   | =::=::=::=                   |                 | Disartis                                       |                                    |                                     | 0.70                           |                          | 07.0                                       | 140                                                        |
| 11.6       | 19.3               | 0.43       | 3.9     | 2.83            | limo argilloso-argilla limosa                    |        | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       |                                    |                                     | 0.73                           |                          | 67.3                                       | 146                                                        |
| 9.4        | 15.7               | 0.24       | 2.7     | 2.81            | limo argilloso-argilla limosa                    | 3.10   | =::=::=::=                   |                 | Molle-plastica (Soffice)                       |                                    |                                     | 0.62                           |                          | 49.2                                       | 128                                                        |
|            |                    |            |         |                 |                                                  | 3.30   | =::=::=::=                   |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 11.8       | 18.5               | 0.32       | 2.9     | 2.77            | limo argilloso-argilla limosa                    |        | =::=::=:= <br>=::=::=::=     |                 | Plastica                                       |                                    |                                     | 0.74                           |                          | 65.9                                       | 147                                                        |
|            |                    |            |         |                 |                                                  |        | =::=::=:                     |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  |        | =;:=;:=;:= <br>=::=::=       |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 14.2       | 21.1               | 0.36       | 2.7     | 2 70            | limo argilloso-argilla limosa                    | 3.90   | =:;=:;=;:= <br>=:;=:;=:;=    |                 | Plastica                                       |                                    |                                     | 0.85                           |                          | 73.9                                       | 165                                                        |
|            |                    |            |         |                 |                                                  | 4.10   | =::=::=:=                    |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 10.5       | 15.7               | 0.37       | 3.9     | 2.91            | limo argilloso-argilla limosa                    | 4.30   | =::=::=::=                   |                 | Plastica                                       |                                    |                                     | 0.68                           |                          | 60.6                                       | 137                                                        |
| 14.8       | 21.2               | 0.54       | 3.9     | 2.81            | limo argilloso-argilla limosa                    | 4 50   | =::=::=::=                   |                 | Plastica                                       |                                    |                                     | 0.87                           |                          | 85.6                                       | 169                                                        |
| 12.0       | 17.2               | 0.45       | 4.0     | 2.88            | limo argilloso-argilla limosa                    |        | =::=::=::=                   |                 | Plastica                                       |                                    |                                     | 0.75                           |                          | 69.5                                       | 148                                                        |
| 14.4       | 19.3               | 0.65       | 4.8     | 2.89            | limo argilloso-argilla limosa                    | 4.70   | =;;=;;=;;= <br>=;;=;;=       |                 | Plastica                                       |                                    |                                     | 0.86                           |                          | 82.8                                       | 167                                                        |
|            |                    |            |         |                 |                                                  |        | =::=::=::=                   |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  |        | =::=::=::= <br>=::=::=::=    |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  |        | =;;=;;=;;= <br>=;;=;;=       |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  |        | =::=::=:                     |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  |        | =;:=;:=;:= <br>=::=::=;:=    |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  |        | =::=::=::=                   |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  | 5.90   | =::=::=::=                   |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 17.1       | 21.3               | 0.88       | 5.5     | 2.90            | limo argilloso-argilla limosa                    |        | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       |                                    |                                     | 0.97                           |                          | 96.9                                       | 186                                                        |
| 11.5       | 14.1               | 0.57       | F 4     | 0.00            | arailla arailla lissaas                          | 6.20   | =;;=;;=;                     |                 | Disstins                                       |                                    |                                     | 0.70                           | 0.70                     | CE 4                                       | 144                                                        |
| 11.5       | 14.1               | 0.57       | 5.4     | 3.03            | argilla-argilla limosa                           |        | ==:==                        |                 | Plastica                                       |                                    |                                     | 0.73                           | 2.72                     | 65.4                                       | 144                                                        |
|            |                    |            |         |                 |                                                  |        | ==;== <br>==;==              |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  |        | ==:==                        |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 9.2        | 11.0               | 0.15       | 1.9     | 2.85            | limo argilloso-argilla limosa                    | 6.80   | ==:== <br> =::=::=           |                 | Molle-plastica (Soffice)                       |                                    |                                     | 0.61                           |                          | 37.1                                       | 126                                                        |
|            |                    |            |         |                 |                                                  | 7 10   | =;;=;;=                      |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 15.3       | 17.5               | 0.32       | 2.2     | 2.73            | limo argilloso-argilla limosa                    | 7.10   | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       |                                    |                                     | 0.89                           |                          | 68.0                                       | 169                                                        |
|            |                    |            |         |                 |                                                  |        | =::=::=::=                   |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  |        | =::=::=                      |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  | 7.70   | =::=::=:= <br>=::=::=::=     |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 22.1       | 24.4               | 0.52       | 2.5     | 2.64            | limo argilloso-argilla limosa                    | 7 90   | =::=::=::=                   |                 | Solido-plastica (Duro)                         |                                    |                                     | 1.14                           |                          | 109.5                                      | 219                                                        |
| 13.9       | 15.3               | 0.23       | 1.9     | 2.73            | limo argilloso-argilla limosa                    | 7.50   | =::=::=::=                   |                 | Plastica                                       |                                    |                                     | 0.83                           |                          | 55.2                                       | 161                                                        |
|            |                    |            |         |                 |                                                  |        | =::=::=::= <br>=::=::=::=    |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 10.0       | 20.2               | 0.24       | 2.0     | 0.64            | limo oraillogo oraillo limoso                    | 8.30   | =::=::=:                     |                 | Planting                                       |                                    |                                     | 1.02                           |                          | 79.1                                       | 105                                                        |
| 18.8       | 20.2               | 0.34       | 2.0     |                 | limo argilloso-argilla limosa                    | 8.50   | =::=::=::= <br>::::=:::=:::  |                 | Plastica                                       |                                    |                                     | 1.03                           |                          | 79.1                                       | 195                                                        |
| 16.4       | 17.4               | 0.29       | 1.9     | 2.69            | limo argilloso-argilla limosa                    | _      | =;;=;;=;;=                   |                 | Plastica                                       |                                    |                                     | 0.94                           |                          | 66.8                                       | 181                                                        |
| ,          |                    |            | _       |                 | P                                                | 8.80   | =::=::=::=                   |                 | Disarios                                       |                                    |                                     |                                |                          |                                            |                                                            |
| 19.2       | 20.0               | 0.41       | 2.4     | 2.69            | limo argilloso-argilla limosa                    |        | =;:=;:=;:= <br>=::=::=;:=    |                 | Plastica                                       |                                    |                                     | 1.05                           |                          | 89.7                                       | 200                                                        |
|            |                    |            |         |                 |                                                  | 0.00   | =::=::=                      |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 32.8       | 33.2               | 0.45       | 1.6     | 2.41            | sabbia limosa-limo sabbioso                      | 9.20   | =::=::=::= <br>::::=:::=:::  |                 | Sciolta                                        | 30.6                               | 34.1                                |                                |                          | 120.7                                      | 237                                                        |
|            |                    |            |         |                 |                                                  |        | :::=:::=::::                 |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
|            |                    |            |         |                 |                                                  | 9.60   | :::=:::=::::                 |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |
| 12.6       | 12.5               | 0.42       | 3.9     | 2.99            | argilla-argilla limosa                           |        | =;:=;:=;:= <br>==:==         |                 | Plastica                                       |                                    | 1                                   | 0.78                           | 2.15                     | 73.0                                       | 153                                                        |
| 12.0       |                    |            |         |                 |                                                  |        |                              |                 |                                                |                                    |                                     |                                |                          |                                            |                                                            |

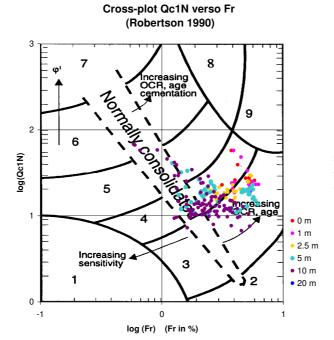


S.G.T. sas.
di Van Zutphen Albert & C.
Via Matteotti 50
48012 Bagnacavallo (RA)

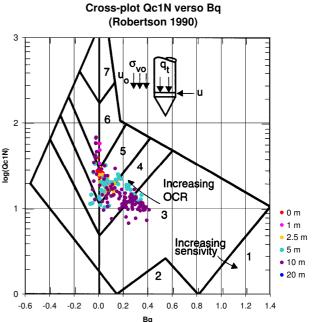
#### CPTU 4

24/01/2012 Monte Sant'Andrea Granarolo Faentina Faenza 2.30 Data Cantiere / Via Località
Comune
Profondità falda idrica m.

| 1 10101       |                    |               |            |                 |                                                  |                                                                |                 |                                                |                                          |                                   |                                |                          |                                            |                                                                |
|---------------|--------------------|---------------|------------|-----------------|--------------------------------------------------|----------------------------------------------------------------|-----------------|------------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------|--------------------------|--------------------------------------------|----------------------------------------------------------------|
| QT<br>daN/cmq | Qc1N<br>Idriss & E | FT<br>daN/cmq | FT/Qnet    | Ic<br>Robertson | Litologia Robertson 1990  basato su Fr vs Qc1N H |                                                                | Falda<br>idrica | Addensamento (Sabbia)<br>Consistenza (Argilla) | Densità<br>Relativa<br>Tatsuoka 199<br>% | Angolo<br>Attrito o'<br>Robertson | Coesione<br>Benassi<br>daN/cmq | OCR<br>0.20<br>Robertson | Modulo<br>Edometrico<br>Benassi<br>daN/cmq | Velocità Vs<br>Baldi (sabbie),<br>Mayne & Rix (argill<br>m/sec |
| 14.0          | 13.7               | 0.45          | 3.6        | 2.94            | limo argilloso-argilla limosa                    | =::=::=                                                        |                 | Plastica                                       |                                          |                                   | 0.84                           |                          | 81.4                                       | 164                                                            |
| 36.3          | 35.3               | 0.53          | 1.8        | 2.42            | sabbia limosa-limo sabbioso                      | ) =::=::=!:= <br>::::=:::=:::=                                 |                 | Sciolta                                        | 32.6                                     | 34.3                              |                                |                          | 143.8                                      | 249                                                            |
| 16.1          | 15.3               | 0.44          | 3.1        | 2.85            |                                                  | )<br>=::=::=::= <br>=::=::=::=                                 |                 | Plastica                                       |                                          |                                   | 0.93                           |                          | 94.2                                       | 179                                                            |
| 12.7          | 11.9               | 0.44          | 4.1        | 3.02            | 10.70<br>argilla-argilla limosa                  | =::=::=i<br>==:==i                                             |                 | Plastica                                       |                                          |                                   | 0.78                           | 1.97                     | 73.4                                       | 153                                                            |
|               |                    |               |            |                 |                                                  | ==;==                                                          |                 |                                                |                                          |                                   |                                |                          |                                            |                                                                |
| 8.3           | 7.6                | 0.14          | 2.1        |                 | 11.20                                            | ==:== <br>==:==                                                |                 | Molle-plastica (Soffice)                       |                                          |                                   | 0.56                           | 1.14                     | 36.0                                       | 118                                                            |
| 12.5          | 11.4               | 0.21          | 2.0        | 2.86            |                                                  | =::=::=::= <br>=::=::=::=                                      |                 | Plastica                                       |                                          |                                   | 0.77                           |                          | 52.4                                       | 152                                                            |
| 22.8<br>14.8  | 20.9<br>13.3       | 0.27<br>0.32  | 1.3<br>2.5 |                 | limo argilloso-argilla limosa                    |                                                                |                 | Sciolta<br>Plastica                            | 15.3                                     | 30.7                              | 0.88                           |                          | 79.2<br>73.7                               | 218<br>169                                                     |
| 64.6          | 59.5               | 0.43          | 0.7        | 2.01            | sabbia-sabbia limosa                             |                                                                |                 | Mediamente Addensata                           | 49.9                                     | 37.1                              |                                |                          | 202.2                                      | 209                                                            |
| 47.2          | 42.6               | 0.56          | 1.5        | 2.32            | sabbia limosa-limo sabbioso                      | ::::=::::=:::: <br>  ::::=::::=::::                            |                 | Mediamente Addensata                           | 38.8                                     | 35.0                              |                                |                          | 170.1                                      | 230                                                            |
| 15.2          | 12.9               | 0.35          | 2.8        | 2.88            | limo argilloso-argilla limosa                    | =;;=;;=;;= <br> =;;=;;=                                        |                 | Plastica                                       |                                          |                                   | 0.89                           |                          | 81.2                                       | 173                                                            |
| 12.9          | 10.7               | 0.42          | 4.0        | 3.04            | argilla-argilla limosa                           |                                                                |                 | Plastica                                       |                                          |                                   | 0.79                           | 1.67                     | 75.0                                       | 156                                                            |
| 9.2           | 7.3                | 0.30          | 4.5        | 3.21            | argilla-argilla limosa                           | ==:== <br> ==:==                                               |                 | Molle-plastica (Soffice)                       |                                          |                                   | 0.61                           | 1.03                     | 52.7                                       | 126                                                            |
| 14.3          | 11.4               | 0.28          | 2.4        | 2.89            | limo argilloso-argilla limosa                    |                                                                |                 | Plastica                                       |                                          |                                   | 0.85                           |                          | 67.5                                       | 166                                                            |
| 39.6          | 33.0               | 0.56          | 1.6        | 2.41            | sabbia limosa-limo sabbioso                      | ) =::=::=i:=i::=i::: <br>::::=::::=::::=::::                   |                 | Sciolta                                        | 30.4                                     | 33.2                              |                                |                          | 145.8                                      | 273                                                            |
| 20.2          | 15.8               | 0.39          | 2.2        | 2.76            | limo argilloso-argilla limosa                    |                                                                |                 | Solido-plastica (Duro)                         |                                          |                                   | 1.08                           |                          | 90.4                                       | 206                                                            |
| 38.8          | 31.2               | 0.46          | 1.4        | 2.41            | sabbia limosa-limo sabbioso                      |                                                                |                 | Sciolta                                        | 28.6                                     | 32.7                              |                                |                          | 136.7                                      | 267                                                            |
| 18.8          | 14.2               | 0.24          | 1.5        | 2.70            | limo argilloso-argilla limosa                    | =::=::=i=i                                                     |                 | Plastica                                       |                                          |                                   | 1.03                           |                          | 67.8                                       | 198                                                            |
| 14.8          | 10.7               | 0.23          | 2.0        |                 | limo argilloso-argilla limosa                    |                                                                |                 | Plastica                                       |                                          |                                   | 0.87                           |                          | 60.6                                       | 170                                                            |
| 18.0          | 12.8               | 0.30          | 2.0        | 2.81            | limo argilloso-argilla limosa                    | =;:=;:=;:= <br>=::=::=::=                                      |                 | Plastica                                       |                                          |                                   | 1.00                           |                          | 75.0                                       | 191                                                            |
| 15.5          | 10.8               | 0.20          | 1.6        | 2.82            | limo argilloso-argilla limosa                    | ] =;;=;;=;;= <br>=;;=;;=;;= <br>=;;=;;=;;=                     |                 | Plastica                                       |                                          |                                   | 0.90                           |                          | 56.8                                       | 173                                                            |
| 23.1          | 16.3               | 0.55          | 2.7        | 2.80            | limo argilloso-argilla limosa                    | =::=::=!<br>=::=::=!<br>=::=::=!<br>  =::=::=!                 |                 | Solido-plastica (Duro)                         |                                          |                                   | 1.17                           |                          | 122.0                                      | 224                                                            |
| 17.4          | 11.8               | 0.33          | 2.3        | 2.87            | limo argilloso-argilla limosa                    | =:=::=:= <br>=::=::= <br>=::=::=                               |                 | Plastica                                       |                                          |                                   | 0.98                           |                          | 79.8                                       | 188                                                            |
| 17.2          | 11.5               | 0.45          | 3.2        | 2.97            | argilla-argilla limosa                           | m;;m;;m <br>  m;;m <br>  m;;m <br>  m;;m <br>  m;;m <br>  m;;m |                 | Plastica                                       |                                          |                                   | 0.97                           | 1.65                     | 100.4                                      | 186                                                            |
| 16.7          | 10.9               |               | 2.0        |                 | limo argilloso-argilla limosa<br>19.20           | =::=::=i=i=i=i                                                 |                 | Plastica                                       |                                          |                                   | 0.95                           |                          | 70.3                                       | 183                                                            |
| 26.2          | 17.7               | 0.66          | 2.9        |                 |                                                  | =;:=;:=;:= <br>                                                |                 | Solido-plastica (Duro)                         |                                          |                                   | 1.26                           |                          | 146.9                                      | 243                                                            |
| 37.2          | 25.8               | 0.61          | 1.9        | 2.54            | sabbia limosa-limo sabbioso                      | :::=:::=::: <br>::::=:::=::: <br>::::=:::=:::                  |                 | Sciolta                                        | 22.3                                     | 31.1                              |                                |                          | 149.2                                      | 290                                                            |
| 32.3          | 22.1               | 0.70          | 2.4        | 2.66            | limo argilloso-argilla limosa                    | =::=::=                                                        |                 | Semi solida (Molto duro)                       |                                          |                                   | 1.42                           |                          | 152.8                                      | 277                                                            |


Comune Faenza Via Monte Sant'Andrea Localita' Granarolo Faentina Granfrutta Zani Committente Data

24/01/2012




S.G.T. sas. di Van Zutphen Albert & C. Via Matteotti 50 48012 Bagnacavallo (RA) www.geo55.com

Numero prova 2.30 Quota falda



Cross-plot Qc1N verso Fr



# per la verifica della liquefazione secondo Robertson 1996 3 7 CRR = 0.5 2 log(Qc1N) • 0 m • 1 m • 2.5 m • 5 m • 10 m • 20 m 0 log (Fr) (Fr in %)

# per la verifica della liquefazione secondo Olsen 1996 Den log(Qc1) (Qc1 in bars) • 0 m • 1 m • 2.5 m • 5 m • 10 m ted Normalized • 20 m Liquefaction Cyclic Resistance Ratio (CRR, log (Fr) (Fr in %)

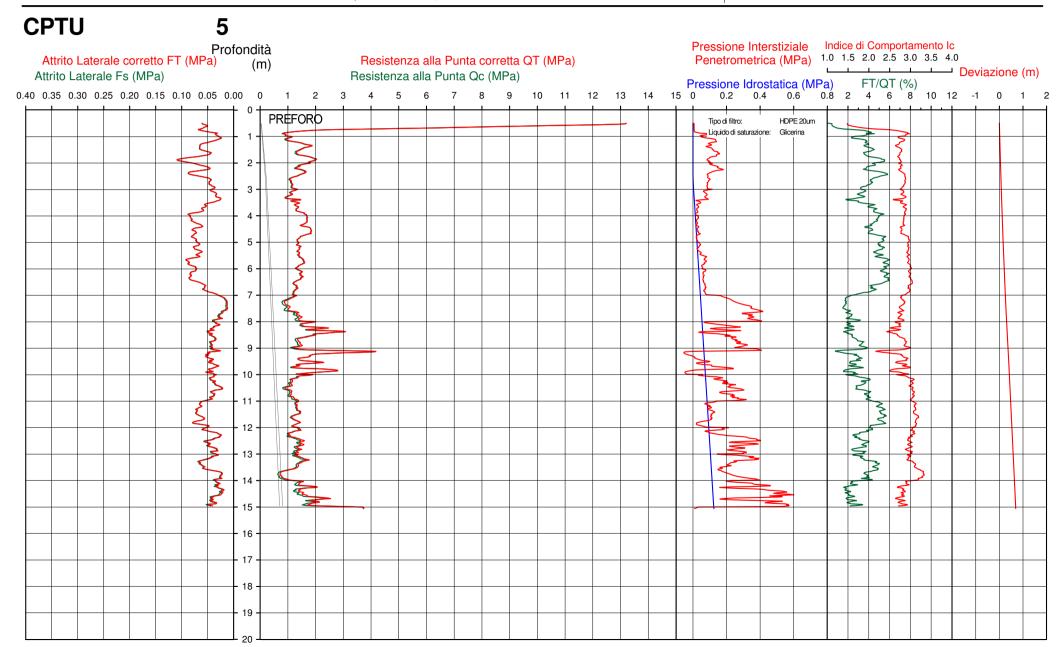
Cross-plot Qc1N verso Fr

| Litotipo : | Litotipo secondo Robertson 1990       |  |  |  |  |  |  |  |  |  |
|------------|---------------------------------------|--|--|--|--|--|--|--|--|--|
| Zone       | Tipo di comportamento                 |  |  |  |  |  |  |  |  |  |
|            |                                       |  |  |  |  |  |  |  |  |  |
| 9          | Terreni molto duri a grana fine       |  |  |  |  |  |  |  |  |  |
| 8          | Sabbia molto densa e sabbia argillosa |  |  |  |  |  |  |  |  |  |
| 7          | Sabbia ghiaosa – sabbia densa         |  |  |  |  |  |  |  |  |  |
| 6          | Sabbia – sabbia limosa                |  |  |  |  |  |  |  |  |  |
| 5          | Sabbia limosa – limo sabbioso         |  |  |  |  |  |  |  |  |  |
| 4          | Limo argilloso – argilla limosa       |  |  |  |  |  |  |  |  |  |
| 3          | Argilla limoso – argilla              |  |  |  |  |  |  |  |  |  |
| 2          | Torba                                 |  |  |  |  |  |  |  |  |  |
| 1          | Terreni fini sensitivi                |  |  |  |  |  |  |  |  |  |

| Potenziale o | di liquefacibilita                                                                                                                              |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Zone A       | Liquefazione ciclica possibile -<br>dipendente da ampiezza e tempo<br>del carico ciclico.                                                       |
| Zone B       | Liquefazione improbabile.                                                                                                                       |
| Zone C       | Liquefazione fluida<br>e liquefazione ciclica possibile -<br>dipendente da plasticità e sensitività,<br>da ampiezza e tempo del carico ciclico. |

Comune Via Localita' Committente Data Faenza Monte Sant'Andrea Granarolo Faentina Granfrutta Zani 17-feb-12 Falda 2.60 m

Sigla della Punta Tecnopenta 010104


Azzeramento Inizio prova
Ultimo taratura guadagno 26-set-2011
Ultimo taratura per deriva termica 31-mar-2011



S.G.T. sas di Van Zutphen Albert & C.

Via Matteotti 50 48012 Bagnacavallo (RA)

www.geo55.com





#### CPTU 5

Data Cantiere / Via 17 febbraio 2012 Monte Sant'Andrea Granarolo Faentina Località
Comune
Profondità falda idrica m. Faenza 2.60

| 101011       | ndità fal          | ua iuiii        | Ja III.    |                 | 2.60                                                         |        |                              |                 |                                                |                                    |                                   |                                |                          |                                            | 163                                                        |
|--------------|--------------------|-----------------|------------|-----------------|--------------------------------------------------------------|--------|------------------------------|-----------------|------------------------------------------------|------------------------------------|-----------------------------------|--------------------------------|--------------------------|--------------------------------------------|------------------------------------------------------------|
|              | Qc1N<br>Idriss & E | FT doN/oma      | FT/Qnet    | Ic<br>Robertson | Litologia Robertson 1990<br>basato su Fr vs Qc1N             | H<br>m | Litologia grafica            | Falda<br>idrica | Addensamento (Sabbia)<br>Consistenza (Argilla) | Densità<br>Relativa<br>Tatsuoka 19 | Angolo<br>Attrito o'<br>Robertson | Coesione<br>Benassi<br>daN/cmq | OCR<br>0.20<br>Robertson | Modulo<br>Edometrico<br>Benassi<br>daN/cmq | Velocità Vs<br>Baldi (sabbie),<br>Mayne & Rix (ar<br>m/sec |
| 72.3         | 115.0              | daN/cmq<br>0.58 | 1.4        | 1.93            | sabbia-sabbia limosa                                         |        |                              |                 | Addensata                                      | 71.6                               | 48.9                              | datvernq                       |                          | 253.9                                      | 160                                                        |
| 9.7          | 16.6               | 0.36            | 3.8        | 2.88            | limo argilloso-argilla limosa                                | 0.80   | ::::=:::= <br>=::=::=::=     |                 | Molle-plastica (Soffice)                       |                                    |                                   | 0.64                           |                          | 56.5                                       | 131                                                        |
| 10.5         | 17.9               | 0.31            | 3.0        | 2.79            | limo argilloso-argilla limosa                                | 1.00   | =::=::=::=                   |                 | Plastica                                       | -                                  |                                   | 0.68                           |                          | 61.5                                       | 137                                                        |
| 16.2         | 27.6               | 0.62            | 3.9        |                 | limo argilloso-argilla limosa                                | 1.20   | =::=::=:=<br>=::=::=:=       |                 | Plastica                                       |                                    |                                   | 0.93                           |                          | 94.1                                       | 180                                                        |
|              |                    |                 |            |                 |                                                              | 1 50   | =:=:=:=                      |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
| 13.5         | 23.0               | 0.49            | 3.7        | 2.76            | limo argilloso-argilla limosa                                |        | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       |                                    |                                   | 0.82                           |                          | 78.7                                       | 161                                                        |
| 18.6         | 31.5               | 0.88            | 4.8        | 2.74            | limo argilloso-argilla limosa                                | 1.70   | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       |                                    |                                   | 1.02                           |                          | 106.3                                      | 196                                                        |
| 15.0         | 25.4               | 0.67            | 4.6        | 2 79            | limo argilloso-argilla limosa                                | 2.00   | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       | -                                  |                                   | 0.88                           |                          | 86.1                                       | 171                                                        |
| 15.0         | 20.4               | 0.07            | 4.0        | 2.75            | iiiio aigiioso aigiia iiiiosa                                |        | =::=::=::= <br>=::=::=::=    |                 | i iddiod                                       |                                    |                                   | 0.00                           |                          | 00.1                                       | .,,                                                        |
|              |                    |                 |            |                 |                                                              | 2 50   | =::=::=::=                   |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
| 11.6         | 18.7               | 0.39            | 3.6        | 2.82            | limo argilloso-argilla limosa                                | 2.00   | =::=::=:                     | <u>H2O</u>      | Plastica                                       |                                    |                                   | 0.73                           |                          | 67.2                                       | 145                                                        |
|              |                    |                 |            |                 |                                                              |        | =::=::=::=                   |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
|              |                    |                 |            |                 |                                                              |        | =::=::=::=                   |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
|              |                    |                 |            |                 |                                                              |        | =::=::=::= <br>=::=::=::=    |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
|              |                    |                 |            |                 |                                                              |        | =::=::=::= <br>=::=::=::=    |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
| 13.6         | 20.3               | 0.59            | 4.5        | 2.86            | limo argilloso-argilla limosa                                | 3.50   | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       |                                    |                                   | 0.82                           |                          | 78.3                                       | 161                                                        |
|              |                    |                 |            |                 |                                                              |        | =::=::=::=                   |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
| 16.9         | 23.4               | 0.76            | 4.7        | 2.83            | limo argilloso-argilla limosa                                | 3.90   | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       |                                    |                                   | 0.96                           |                          | 96.8                                       | 184                                                        |
|              |                    |                 |            |                 |                                                              |        | =::=::=::=                   |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
|              |                    |                 |            |                 |                                                              |        | =;;=;;=;;= <br>=;;=;;=;;=    |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
|              |                    |                 |            |                 |                                                              |        | =::=::=::=                   |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
|              |                    |                 |            |                 |                                                              | 4.80   | =::=::=:=                    |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
| 14.3         | 18.5               | 0.75            | 5.6        | 2.95            | argilla-argilla limosa                                       |        | ==;== <br>==;==              |                 | Plastica                                       |                                    |                                   | 0.86                           | 3.84                     | 81.3                                       | 167                                                        |
|              |                    |                 |            |                 |                                                              |        |                              |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
|              |                    |                 |            |                 |                                                              |        | =::=::=:                     |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
|              |                    |                 |            |                 |                                                              |        | =:== <br>=::=::=             |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
|              |                    |                 |            |                 |                                                              |        | =::=::=:                     |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
| 14.4         | 17.5               | 0.79            | 5.9        | 2.00            | argilla-argilla limosa                                       | 5.90   | ==:== <br> ==:==             |                 | Plastica                                       |                                    |                                   | 0.86                           | 3.48                     | 81.3                                       | 167                                                        |
| 14.4         | 17.5               | 0.73            | 3.5        | 2.55            | argina-argina innosa                                         |        | ==:== <br> ==:==             |                 | i idolica                                      |                                    |                                   | 0.00                           | 3.40                     | 01.0                                       | 107                                                        |
|              |                    |                 |            |                 |                                                              | C 40   | ==:== <br> ==:==             |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
| 12.9         | 15.1               | 0.59            | 5.1        | 2.99            | argilla-argilla limosa                                       | 6.40   | :                            |                 | Plastica                                       |                                    |                                   | 0.79                           | 2.89                     | 73.3                                       | 156                                                        |
|              |                    |                 |            |                 |                                                              |        | ==:==                        |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
|              |                    |                 |            |                 |                                                              | 6.90   | ==:==                        |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
| 11.6         | 13.3               | 0.23            | 2.2        | 2.82            | limo argilloso-argilla limosa                                |        | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       |                                    |                                   | 0.73                           |                          | 52.0                                       | 145                                                        |
| 9.2          | 10.4               | 0.12            | 1.6        | 2.84            | limo argilloso-argilla limosa                                |        | =::=::=::=                   |                 | Molle-plastica (Soffice)                       |                                    |                                   | 0.61                           |                          | 34.0                                       | 126                                                        |
| 10.5         | 11.7               | 0.14            | 1.5        | 2.77            | limo argilloso-argilla limosa                                |        | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       |                                    |                                   | 0.68                           |                          | 37.6                                       | 137                                                        |
| 15.0         | 16.3               | 0.29            | 2.2        | 2.74            | limo argilloso-argilla limosa                                | 7.60   | =::=::=;:= <br>=::=::=;:=    |                 | Plastica                                       |                                    |                                   | 0.88                           |                          | 65.5                                       | 171                                                        |
|              |                    |                 |            |                 |                                                              |        | =;;=;;=;;= <br>=;;=;;=;;=    |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
|              |                    |                 |            |                 |                                                              |        | =::=::=::=                   |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
| 22.9         | 24.1               | 0.44            | 2.1        | 2.60            | sabbia limosa-limo sabbioso                                  | 8.20   | =::=::=::= <br>=::=::=::=    |                 | Sciolta                                        | 20.0                               | 32.1                              |                                |                          | 98.1                                       | 220                                                        |
|              |                    |                 |            |                 |                                                              | 8.50   | ::::=:::=::: <br> =::=::=::= |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
| 14.6         | 15.1               | 0.40            | 3.1        | 2.86            | limo argilloso-argilla limosa                                |        | =::=::=::=                   |                 | Plastica                                       |                                    |                                   | 0.87                           |                          | 87.9                                       | 168                                                        |
|              |                    |                 |            |                 |                                                              |        | =::=::=::= <br>=::=::=::=    |                 |                                                |                                    |                                   |                                |                          |                                            |                                                            |
| 27.5         | 27.7               | 0.39            | 1.8        | 251             | sabbia limosa-limo sabbioso                                  | 9.00   | =::=::=::= <br> =::=::=::=   |                 | Sciolta                                        | 24.6                               | 32.9                              |                                |                          | 108.6                                      | 224                                                        |
| 16.6         |                    | 0.39            | 3.2        |                 |                                                              | 9.20   | ::::=::::=::::               |                 |                                                | 24.0                               | 52.3                              | 0.95                           |                          | 97.2                                       | 182                                                        |
| 10.0         | 10.6               | 0.4/            | 3.2        | ∠.84            | limo argilloso-argilla limosa                                | 0.50   | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       |                                    |                                   | 0.95                           |                          | 97.2                                       | 162                                                        |
| 19.6         | 19.3               | 0.44            | 2.5        |                 | limo argilloso-argilla limosa                                |        | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       |                                    |                                   | 1.06                           |                          | 96.1                                       | 203                                                        |
| 15.3         | 14.9               | 0.37            | 2.8        |                 | limo argilloso-argilla limosa                                |        | =::=::=::= <br>=::=::=::=    |                 | Plastica                                       | 1                                  |                                   | 0.89                           |                          | 83.9                                       | 172                                                        |
| 25.9<br>15.7 | 25.2<br>15.0       | 0.46            | 1.9<br>2.9 |                 | sabbia limosa-limo sabbioso<br>limo argilloso-argilla limosa |        | :::=::=::= <br>=::=::=::=    |                 | Sciolta<br>Plastica                            | 21.5                               | 32.1                              | 0.91                           |                          | 105.7<br>88.9                              | 236<br>176                                                 |
| 11.4         | 10.6               | 0.38            | 3.9        | 3.04            | argilla-argilla limosa                                       | 10.10  | =::=::= <br>=::=:            |                 | Plastica                                       |                                    |                                   | 0.72                           | 1.73                     | 66.2                                       | 144                                                        |
|              | 1                  |                 | ĺ          | ĺ               | I                                                            |        | ==;==                        |                 | 1                                              | 1                                  | I                                 | 1                              | ĺ                        | Ī                                          | Ī                                                          |



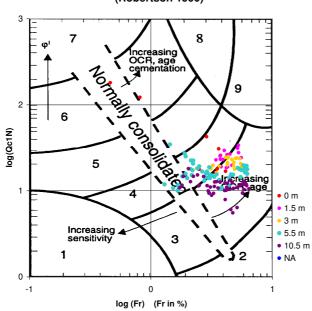
48012 Bagnacavallo (RA)

#### **CPTU** 5

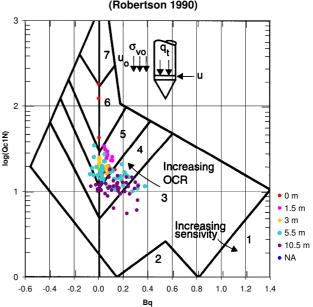
Data Cantiere / Via 17 febbraio 2012 Monte Sant'Andrea Granarolo Faentina Località

Comune Faenza Vs 0 - 15

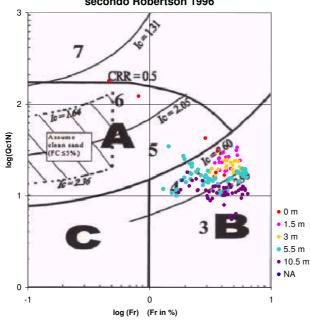
| omun | une<br>ondità falda idrica m. |               |         |                 | Faenza<br>2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            | Vs 0 - 15<br>163                                          |  |  |
|------|-------------------------------|---------------|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------|-----------------|------------------------------------------------|-------------------------------------|-----------------------------------|--------------------------------|--------------------------|--------------------------------------------|-----------------------------------------------------------|--|--|
|      | Qc1N<br>Idriss & E            | FT<br>daN/cmq | FT/Qnet | Ic<br>Robertson | Litologia Robertson 1990<br>basato su Fr vs Qc1l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N H   | Litologia grafica           | Falda<br>idrica | Addensamento (Sabbia)<br>Consistenza (Argilla) | Densità<br>Relativa<br>Tatsuoka 199 | Angolo<br>Attrito o'<br>Robertson | Coesione<br>Benassi<br>daN/cmq | OCR<br>0.20<br>Robertson | Modulo<br>Edometrico<br>Benassi<br>daN/cmq | Velocità Vs<br>Baldi (sabbie),<br>Mayne & Rix (a<br>m/sec |  |  |
| unq  |                               | darveniq      | /6      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | :                           |                 |                                                | /6                                  |                                   | darverng                       |                          | darveniq                                   | misco                                                     |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ==;==                       |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
| .6   | 12.2                          | 0.67          | 5.8     | 3 10            | argilla-argilla limosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.00 | ==:== <br> ==:==            |                 | Plastica                                       |                                     |                                   | 0.82                           | 2.00                     | 76.6                                       | 161                                                       |  |  |
|      | 12.2                          | 0.07          | 3.0     | 0.10            | argina argina iiriosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | ==:==                       |                 | Tastica                                        |                                     |                                   | 0.02                           | 2.00                     | 70.0                                       | 101                                                       |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.50 | ==:==                       |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
| 1.9  | 10.4                          | 0.60          |         |                 | argilla-argilla limosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.70 |                             |                 | Plastica                                       |                                     |                                   | 0.75                           | 1.66                     | 67.0                                       | 149                                                       |  |  |
| 2.6  | 10.8                          | 0.49          | 4.6     | 3.07            | argilla-argilla limosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | ==:==                       |                 | Plastica                                       |                                     |                                   | 0.78                           | 1.71                     | 72.5                                       | 153                                                       |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ==;== <br>==;== <br>==;==   |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.40 | ==:== <br> :=               |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
| 4.9  | 12.5                          | 0.47          | 3.7     | 2.97            | argilla-argilla limosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.10 | =::=::= <br>==:==           |                 | Plastica                                       |                                     |                                   | 0.88                           | 2.01                     | 86.5                                       | 171                                                       |  |  |
| 1.0  | 11.4                          | 0.48          | 4.1     | 3.03            | argilla-argilla limosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.70 |                             |                 | Plastica                                       |                                     |                                   | 0.84                           | 1.78                     | 80.9                                       | 164                                                       |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | =;;=;;= <br>=:;=;;=         |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ==:==:<br>=::=::=           |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | ==:== <br>==:==             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      | 0.5                           | 0.07          | 4.0     | 0.00            | The second secon | 13.60 | ==:== <br>==:==             |                 | Malla dadina (O.C.)                            |                                     |                                   | 0.57                           | 0.07                     | 40.0                                       | 110                                                       |  |  |
| 8.4  | 6.5                           | 0.27          | 4.6     | 3.26            | argilla-argilla limosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | ==:==                       |                 | Molle-plastica (Soffice)                       |                                     |                                   | 0.57                           | 0.87                     | 48.2                                       | 118                                                       |  |  |
| 5.7  | 12.2                          | 0.27          | 2.1     | 2.84            | limo argilloso-argilla limosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.00 | =::=: <br> =::=: <br> =::=: |                 | Plastica                                       |                                     |                                   | 0.91                           |                          | 66.9                                       | 176                                                       |  |  |
| J. 1 | 12.2                          | 0.27          | 2.1     | 2.04            | iiiio argiiioso-argiiia iiiiosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | =;;=;;=;;= <br>=;;=;;=;;=   |                 | i idalica                                      |                                     |                                   | 0.51                           |                          | 00.9                                       | 170                                                       |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | =::=::=::= <br>=::=::=::=   |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
| 0.7  | 16.0                          | 0.40          | 2.2     | 2.75            | limo argilloso-argilla limosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.60 | =::=::=:                    |                 | Solido-plastica (Duro)                         |                                     |                                   | 1.10                           |                          | 92.8                                       | 209                                                       |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.90 | =::=::=::=                  |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
| 4.9  | 14.6                          | 0.44          | 2.7     | 2.84            | limo argilloso-argilla limosa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | =::=::=                     |                 | Solido-plastica (Duro)                         |                                     |                                   | 1.23                           |                          | 131.5                                      | 236                                                       |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |
|      |                               |               |         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                             |                 |                                                |                                     |                                   |                                |                          |                                            |                                                           |  |  |


Comune Faenza
Via Monte Sant'Andrea
Localita' Granarolo Faentina
Committente Granfrutta Zani
Data 17-feb-12

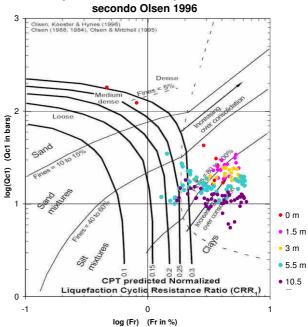
Numero prova **5** Quota falda 2.60




S.G.T. sas. di Van Zulphen Albert & C. Via Matteotti 50 48012 Bagnacavallo (RA) www.geo55.com


#### Cross-plot Qc1N verso Fr (Robertson 1990)




#### Cross-plot Qc1N verso Bq (Robertson 1990)



#### Cross-plot Qc1N verso Fr per la verifica della liquefazione secondo Robertson 1996



# Cross-plot Qc1N verso Fr per la verifica della liquefazione



#### Litotipo secondo Robertson 1990

|      | secondo nobelison 1990                |
|------|---------------------------------------|
| Zone | Tipo di comportamento                 |
|      |                                       |
| 9    | Terreni molto duri a grana fine       |
| 8    | Sabbia molto densa e sabbia argillosa |
| 7    | Sabbia ghiaosa – sabbia densa         |
| 6    | Sabbia – sabbia limosa                |
| 5    | Sabbia limosa – limo sabbioso         |
| 4    | Limo argilloso – argilla limosa       |
| 3    | Argilla limoso – argilla              |
| 2    | Torba                                 |
| 1    | Terreni fini sensitivi                |

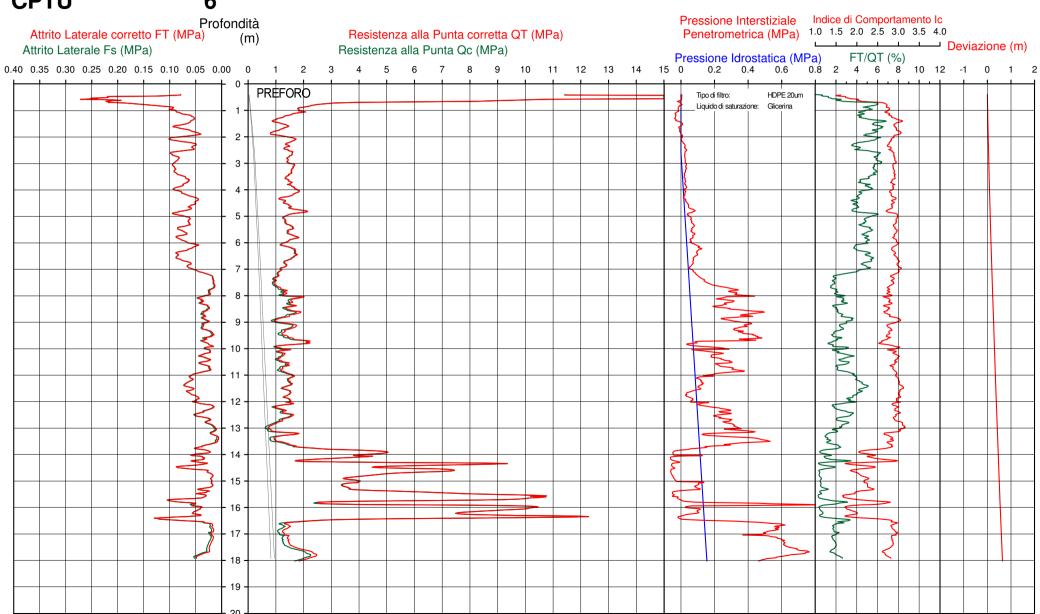
Potenziale di liquefacibilita

| Zone A | Liquefazione ciclica possibile -<br>dipendente da ampiezza e tempo<br>del carico ciclico.                                                       |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Zone B | Liquefazione improbabile.                                                                                                                       |
| Zone C | Liquefazione fluida<br>e liquefazione ciclica possibile -<br>dipendente da plasticità e sensitività,<br>da ampiezza e tempo del carico ciclico. |

Comune Via Localita' Committente Data Faenza Monte Sant'Andrea Granarolo Faentina Granfrutta Zani 17-feb-12 Falda 2.60 m

Sigla della Punta Tecnopenta 010104

Azzeramento Inizio prova
Ultimo taratura guadagno 26-set-2011
Ultimo taratura per deriva termica 31-mar-2011




S.G.T. sas di Van Zutphen Albert & C.

Via Matteotti 50 48012 Bagnacavallo (RA)

www.geo55.com







48012 Bagnacavallo (RA)

#### CPTU 6

Data Cantiere / Via 17 febbraio 2012 Monte Sant'Andrea Granarolo Faentina Località

Comune Faenza Vs 0 - 18

|       | une<br>ondità falda idrica m. |               |         |           | 2.60                             |        |                                          |                 |                                                |                               |                         |                                |                                                  |                      | Vs 0 - 18<br>172               |
|-------|-------------------------------|---------------|---------|-----------|----------------------------------|--------|------------------------------------------|-----------------|------------------------------------------------|-------------------------------|-------------------------|--------------------------------|--------------------------------------------------|----------------------|--------------------------------|
| ΣT    | 0-11                          |               | FT/Qnet | l         | Litologia Robertson 1990         |        | l Halania medica                         | Falda           | Addenosmonte (Cabbia)                          | Densità                       | Angolo                  | Casalana                       | OCR                                              | Modulo<br>Edometrico | Velocità Vs<br>Baldi (sabbie), |
|       | Qc1N<br>Idriss & E            | FT<br>daN/cmq | %       | Robertson | basato su Fr vs Qc1N             | H<br>m | Litologia grafica                        | Falda<br>idrica | Addensamento (Sabbia)<br>Consistenza (Argilla) | Relativa<br>Tatsuoka 199<br>% | Attrito o'<br>Robertson | Coesione<br>Benassi<br>daN/cmq | Robertson                                        | Benassi<br>daN/cmq   | Mayne & Rix (ar<br>m/sec       |
| 123.9 | 177.4                         | 2.00          | 2.0     | 1.91      | sabbia-sabbia limosa             |        |                                          |                 | Molto addensata                                | 85.9                          | 51.5                    |                                |                                                  | 516.1                | 163                            |
| 24.0  | 40.8                          | 1.34          | 5.6     | 2.71      | limo argilloso-argilla limosa    | 0.70   |                                          |                 | Solido-plastica (Duro)                         |                               |                         | 1.20                           |                                                  | 136.1                | 228                            |
| 16.2  | 27.5                          | 0.76          | 4.7     | 2.78      | limo argilloso-argilla limosa    | 0.90   | =::=::=:                                 |                 | Plastica                                       |                               |                         | 0.93                           |                                                  | 92.8                 | 177                            |
|       |                               |               |         |           |                                  | 1.30   | =::=::=::= <br>=::=::=::=                |                 |                                                |                               |                         |                                |                                                  |                      |                                |
| 10.0  | 17.1                          | 0.59          | 6.1     | 3.01      | argilla-argilla limosa           |        | ==:== <br> -=:==                         |                 | Plastica                                       |                               |                         | 0.65                           | 7.37                                             | 56.4                 | 133                            |
| 13.5  | 23.0                          | 0.83          | 6.3     | 2.92      | limo argilloso-argilla limosa    |        | =::=::= <br>  =::=::=::=                 |                 | Plastica                                       |                               |                         | 0.82                           |                                                  | 75.7                 | 161                            |
| 9.4   | 16.0                          | 0.53          | 5.8     | 3.02      | argilla-argilla limosa           | 1.90   | ==:==                                    |                 | Molle-plastica (Soffice)                       |                               |                         | 0.62                           | 5.34                                             | 53.0                 | 127                            |
| 14.4  | 24.4                          | 0.67          | 4.8     | 2.82      | limo argilloso-argilla limosa    |        | =::=::=::=                               |                 | Plastica                                       |                               |                         | 0.86                           |                                                  | 82.3                 | 166                            |
|       |                               |               |         |           |                                  |        | =::=::=::= <br>=::=::=::= <br>=::=::=::= |                 |                                                |                               |                         |                                |                                                  |                      |                                |
| 15.6  | 23.2                          | 0.83          | 5.5     | 2.88      | limo argilloso-argilla limosa    | 2.50   | =::=::=::=                               | H2O             | Plastica                                       |                               |                         | 0.91                           |                                                  | 88.2                 | 175                            |
|       |                               |               |         |           |                                  |        | =;;=;;=;=                                |                 |                                                |                               |                         |                                |                                                  |                      |                                |
|       |                               |               |         |           |                                  |        | =::=::=::=                               |                 |                                                |                               |                         |                                |                                                  |                      |                                |
|       |                               |               |         |           |                                  |        | =::=::=::=                               |                 |                                                |                               |                         |                                |                                                  |                      |                                |
|       |                               |               |         |           |                                  |        | =::=::=::=                               |                 |                                                |                               |                         |                                |                                                  |                      |                                |
|       |                               |               |         |           |                                  |        | =::=::=::=                               |                 |                                                |                               |                         |                                |                                                  |                      |                                |
|       |                               |               |         |           |                                  |        | =::=::=;:= <br>=::=::=::=                |                 |                                                |                               |                         |                                |                                                  |                      |                                |
|       |                               |               |         |           |                                  |        | =::=::=:=                                |                 |                                                |                               |                         |                                |                                                  |                      |                                |
|       |                               |               |         |           |                                  | 4.20   | =::=::=::= <br>=::=::=::=                |                 |                                                |                               |                         |                                |                                                  |                      |                                |
| 12.9  | 17.9                          | 0.51          | 4.2     | 2.88      | limo argilloso-argilla limosa    | 7.20   | =::=::=::= <br>=::=::=::=                |                 | Plastica                                       |                               |                         | 0.79                           |                                                  | 74.8                 | 156                            |
| 16.9  | 22.2                          | 0.67          | 4.2     | 2.81      | limo argilloso-argilla limosa    | 4.50   | =::=::=::= <br>=::=::=::=                |                 | Plastica                                       |                               |                         | 0.96                           |                                                  | 97.4                 | 183                            |
|       |                               |               |         |           |                                  |        | =::=::=::=                               |                 |                                                |                               |                         |                                |                                                  |                      |                                |
| 13.6  | 17.7                          | 0.71          | 5.6     | 2.97      | argilla-argilla limosa           | 4.90   | <u>=::=::=:</u><br>==:==                 |                 | Plastica                                       |                               |                         | 0.82                           | 3.68                                             | 76.7                 | 161                            |
| 15.2  | 19.0                          | 0.73          | 5.1     | 2.92      | limo argilloso-argilla limosa    | 5.10   |                                          |                 | Plastica                                       |                               |                         | 0.89                           |                                                  | 86.8                 | 173                            |
|       |                               |               |         |           |                                  |        | =::=::=::=                               |                 |                                                |                               |                         |                                |                                                  |                      |                                |
|       |                               |               |         |           |                                  |        | =::=::=::=                               |                 |                                                |                               |                         |                                |                                                  |                      |                                |
|       |                               |               |         |           |                                  |        | =::=::=::=                               |                 |                                                |                               |                         |                                |                                                  |                      |                                |
| 13.1  | 15.8                          | 0.60          | 4.9     | 2.97      | argilla-argilla limosa           | 5.90   | =::=:                                    |                 | Plastica                                       |                               |                         | 0.80                           | 3.11                                             | 74.9                 | 157                            |
| 16.5  | 19.3                          | 0.71          | 4.6     |           | limo argilloso-argilla limosa    | 6.10   |                                          |                 | Plastica                                       |                               |                         | 0.94                           | 0                                                | 94.6                 | 182                            |
| 10.5  | 13.3                          | 0.71          | 4.0     | 2.00      | iiiio aigiiioso-aigiila iiiilosa |        | =::=::=:= <br>=::=::=:=                  |                 | i iastica                                      |                               |                         | 0.34                           |                                                  | 34.0                 | 102                            |
| 13.6  | 15.4                          | 0.66          | 5.3     | 3.00      | argilla-argilla limosa           | 6.50   | =::=::=                                  |                 | Plastica                                       |                               |                         | 0.82                           | 2.93                                             | 77.1                 | 160                            |
|       |                               |               |         |           |                                  |        | ==:==                                    |                 |                                                |                               |                         |                                |                                                  |                      |                                |
|       |                               |               |         |           |                                  |        | ==:==                                    |                 |                                                |                               |                         |                                |                                                  |                      |                                |
| 10.2  | 11.2                          | 0.18          | 2.0     | 2.86      | limo argilloso-argilla limosa    | 7.10   | =::=i=i                                  |                 | Plastica                                       |                               |                         | 0.66                           |                                                  | 42.9                 | 134                            |
| 10.2  | 11.2                          | 0.10          | 2.0     | 2.00      | iiiio argiiioso-argiiia iiiiosa  |        | =::=::=:= <br>=::=::=:=                  |                 | i iastica                                      |                               |                         | 0.00                           |                                                  | 42.5                 | 134                            |
|       |                               |               |         |           |                                  |        | =::=::= <br>=::=::=                      |                 |                                                |                               |                         |                                |                                                  |                      |                                |
| 13.0  | 13.9                          | 0.22          | 1.9     | 2 77      | limo argilloso-argilla limosa    | 7.70   | =::=::= <br>  =::=::=                    |                 | Plastica                                       |                               |                         | 0.80                           |                                                  | 52.9                 | 157                            |
| 13.0  | 10.5                          | 0.22          | 1.5     | 2.11      | iiiio argiiioso-argiiia iiiiosa  | 8 00   | =::=::=i= <br> =::=::=i=                 |                 | i iastica                                      |                               |                         | 0.00                           |                                                  | 32.9                 | 137                            |
| 16.1  | 16.7                          | 0.33          | 2.3     | 2.75      | limo argilloso-argilla limosa    | 0.00   | =::=::=                                  |                 | Plastica                                       |                               |                         | 0.93                           |                                                  | 73.8                 | 179                            |
|       |                               |               |         |           |                                  |        | =::=::=::=                               |                 |                                                |                               |                         |                                |                                                  |                      |                                |
|       |                               |               |         |           |                                  |        | =::=::=::=                               |                 |                                                |                               |                         |                                |                                                  |                      |                                |
|       |                               |               |         |           |                                  |        | =::=::=::=                               |                 |                                                |                               |                         |                                |                                                  |                      |                                |
| 10.7  | 10.7                          | 0.30          | 3.4     | 3.00      | argilla-argilla limosa           |        | <u>=::=::= </u>                          |                 | Plastica                                       |                               |                         | 0.69                           | 1.82                                             | 62.1                 | 138                            |
| 14.5  | 14.3                          | 0.27          | 2.1     | 2.78      | limo argilloso-argilla limosa    | 9.00   | <u>==:== </u><br>=::=::=                 |                 | Plastica                                       |                               |                         | 0.86                           | <del>                                     </del> | 62.0                 | 167                            |
|       |                               |               |         |           |                                  |        | =::=::=::=                               |                 |                                                |                               |                         |                                |                                                  |                      |                                |
|       |                               |               |         |           |                                  |        | =::=::=::=                               |                 |                                                |                               |                         |                                |                                                  |                      |                                |
| 20.1  | 19.4                          | 0.32          | 1.8     | 2.63      | limo argilloso-argilla limosa    | 9.60   | =::=::=:=                                |                 | Solido-plastica (Duro)                         | 1                             |                         | 1.07                           | -                                                | 77.7                 | 204                            |
| 12.7  | 12.0                          | 0.32          | 2.3     |           | limo argilloso-argilla limosa    | 9.80   | =::=::=                                  |                 | Plastica                                       | 1                             |                         | 0.78                           |                                                  | 58.7                 | 154                            |
| 14.7  | 12.0                          | 0.20          | 2.3     | 2.07      | arginoso argina innosa           |        | -::-::- <br>-::=::=                      |                 |                                                |                               |                         | 0.70                           |                                                  | 50.7                 | 134                            |
| 11.9  | 11.1                          | 0.34          | 3.3     | 2 00      | argilla-argilla limosa           | 10.20  | =::=:                                    |                 | Plastica                                       | 1                             |                         | 0.75                           | 1.84                                             | 69.5                 | 148                            |
| 11.9  | 11.1                          | 0.54          | 3.3     | 2.30      | argina argina iiiiosa            | 10.40  | ==:== <br> :                             |                 | astroa                                         | 1                             |                         | 0.75                           | 1.04                                             | 03.5                 | 140                            |

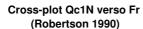


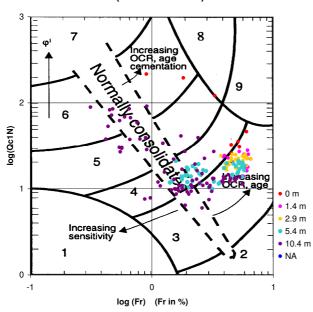
48012 Bagnacavallo (RA)

CPTU 6

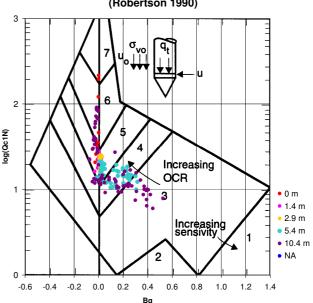
Data Cantiere / Via 17 febbraio 2012 Monte Sant'Andrea Granarolo Faentina Località Comune Faenza

Vs 0 - 18

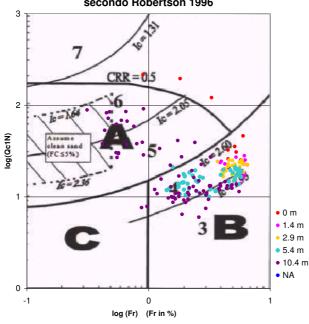

|              | une<br>Indità falda idrica m. |               |            |                 | aenza<br>60                                                    |        |                                               |                 |                                                |                               |              |                                |                   |                                  | Vs 0 - 18<br>172                           |
|--------------|-------------------------------|---------------|------------|-----------------|----------------------------------------------------------------|--------|-----------------------------------------------|-----------------|------------------------------------------------|-------------------------------|--------------|--------------------------------|-------------------|----------------------------------|--------------------------------------------|
|              |                               |               |            |                 | Litologia Robertson 1990                                       |        |                                               |                 |                                                |                               | Angolo       |                                | OCR               | Modulo                           | Velocità Vs                                |
| T<br>N/cmq   | Qc1N<br>Idriss & E            | FT<br>daN/cmq | FT/Qne     | Ic<br>Robertson | basato su Fr vs Qc1N                                           | H<br>m | Litologia grafica                             | Falda<br>idrica | Addensamento (Sabbia)<br>Consistenza (Argilla) | Relativa<br>Tatsuoka 199<br>% |              | Coesione<br>Benassi<br>daN/cmq | 0.20<br>Robertson | Edometrico<br>Benassi<br>daN/cmq | Baldi (sabbie),<br>Mayne & Rix (a<br>m/sec |
| 13.0         | 11.9                          | 0.29          | 2.6        | 2.90            | limo argilloso-argilla limosa                                  |        | =::=::=::=1                                   |                 | Plastica                                       | 7,0                           |              | 0.79                           |                   | 65.2                             | 156                                        |
|              |                               |               |            |                 |                                                                |        | =::=::=::=                                    |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                | 10.90  | =::=::=;= <br>=::=::=::=                      |                 |                                                |                               |              |                                |                   |                                  |                                            |
| 15.4         | 13.8                          | 0.61          | 4.5        | 2.99            | argilla-argilla limosa                                         |        | ==:== <br>==:==                               |                 | Plastica                                       |                               |              | 0.90                           | 2.31              | 88.3                             | 174                                        |
|              |                               |               |            |                 |                                                                |        | ==:==                                         |                 |                                                |                               |              |                                |                   |                                  |                                            |
| 13.0         | 11.4<br>12.6                  | 0.61          | 5.5<br>4.4 |                 | argilla-argilla limosa                                         |        | ==:== <br>==:== <br>==:==                     |                 | Plastica<br>Plastica                           |                               |              | 0.80                           | 1.85              | 73.6<br>83.8                     | 157<br>168                                 |
| 14.5         | 12.0                          | 0.54          | 4.4        | 3.01            | argilla-argilla limosa                                         |        | ==:== <br> ==:==                              |                 | i idolica                                      |                               |              | 0.00                           | 2.00              | 03.0                             | 100                                        |
|              |                               |               |            |                 |                                                                | 12.00  | ==:==                                         |                 |                                                |                               |              |                                |                   |                                  |                                            |
| 12.5         | 10.6                          | 0.26          | 2.4        | 2.93            | limo argilloso-argilla limosa                                  |        | =::=::=::=                                    |                 | Plastica                                       |                               |              | 0.77                           |                   | 59.8                             | 151                                        |
| 13.8         | 11.6                          | 0.40          | 3.4        | 2.98            | argilla-argilla limosa                                         |        | =::=::=::= <br>==:== <br>1                    |                 | Plastica                                       |                               |              | 0.83                           | 1.85              | 80.6                             | 163                                        |
| 14.2         | 11.8                          | 0.33          | 2.7        | 2.91            | limo argilloso-argilla limosa                                  |        | ==;== <br>=:;=;:=;:= <br>=::=::=              |                 | Plastica                                       |                               |              | 0.85                           |                   | 73.5                             | 165                                        |
| 11.4         | 9.4<br>6.6                    | 0.28          | 3.1<br>2.5 |                 | argilla-argilla limosa<br>argilla-argilla limosa               |        | ==;== <br>==;==                               |                 | Plastica<br>Molle-plastica (Soffice)           |                               |              | 0.72<br>0.56                   | 1.43<br>0.92      | 66.8<br>40.1                     | 145<br>118                                 |
|              |                               |               |            |                 |                                                                | 13.10  | ==:==                                         |                 |                                                |                               |              |                                |                   |                                  |                                            |
| 14.2         | 11.5                          | 0.16          | 1.4        |                 | limo argilloso-argilla limosa                                  | 13.30  | =::=::=i= <br>=::=::=::=                      |                 | Plastica                                       |                               |              | 0.85                           |                   | 49.9                             | 165                                        |
| 9.7          | 7.7                           | 0.07          | 0.9        |                 | limo argilloso-argilla limosa                                  | 13.50  | =;;=;;=;;=                                    |                 | Molle-plastica (Soffice)                       |                               |              | 0.64                           |                   | 31.3                             | 131                                        |
| 17.8         | 14.4                          | 0.31          | 1.9        | 2.76            | limo argilloso-argilla limosa                                  | 10.00  | =;:=;:=;:= <br>=::=::=::=                     |                 | Plastica                                       |                               |              | 0.99                           |                   | 72.5                             | 186                                        |
| 39.8         | 33.2                          | 0.37          | 1.1        | 2.31            | sabbia limosa-limo sabbioso                                    | 13.80  | =;;=;:=;:= <br>::::=:::=::::<br>::::=:::=:::: |                 | Sciolta                                        | 30.6                          | 33.2         |                                |                   | 131.2                            | 241                                        |
|              |                               |               |            |                 |                                                                | 14.20  | :::=:::=::::                                  |                 |                                                |                               |              |                                |                   |                                  |                                            |
| 27.9<br>66.3 | 22.6<br>56.3                  | 0.51<br>0.48  | 2.7<br>0.8 |                 | limo argilloso-argilla limosa<br>sabbia-sabbia limosa          |        | =::=::=                                       |                 | Solido-plastica (Duro)<br>Mediamente Addensata | 48.0                          | 36.2         | 1.31                           |                   | 146.8<br>210.4                   | 253<br>226                                 |
|              |                               |               |            |                 |                                                                |        | :::=:::=::::                                  |                 |                                                |                               |              |                                |                   |                                  |                                            |
| 39.6         | 31.6                          | 0.23          | 0.6        | 2.21            | sabbia limosa-limo sabbioso                                    | 14.70  | :::=:::=:::                                   |                 | Sciolta                                        | 29.0                          | 32.8         |                                |                   | 122.2                            | 229                                        |
|              |                               |               |            |                 |                                                                |        |                                               |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                |        | :::=:::=::::=::::                             |                 |                                                |                               |              |                                |                   |                                  |                                            |
| 92.4         | 78.7                          | 0.44          | 0.5        | 1.82            | sabbia-sabbia limosa                                           | 15.40  | :::=:::=::::                                  |                 | Mediamente Addensata                           | 59.1                          | 37.9         |                                |                   | 282.2                            | 221                                        |
|              |                               |               |            |                 |                                                                | 15.70  |                                               |                 |                                                |                               |              |                                |                   |                                  |                                            |
| 42.1<br>93.7 | 33.3<br>78.8                  | 0.74          | 0.6        |                 | sabbia limosa-limo sabbioso<br>sabbia-sabbia limosa            | 15.90  | ::::=::::=::::                                |                 | Sciolta  Mediamente Addensata                  | 30.7<br>59.1                  | 32.9<br>37.7 |                                |                   | 182.5<br>289.4                   | 303                                        |
| 33.7         | 70.0                          | 0.55          | 0.6        | 1.00            | ISADDIA-SADDIA IIITIOSA                                        |        |                                               |                 | Wediamente Addensata                           | 39.1                          | 37.7         |                                |                   | 209.4                            | 223                                        |
|              |                               |               |            |                 |                                                                | 16.40  |                                               |                 |                                                |                               |              |                                |                   |                                  |                                            |
| 35.9<br>14.2 | 27.2<br>9.8                   | 1.01<br>0.20  | 3.2<br>1.7 |                 | limo argilloso-argilla limosa<br>limo argilloso-argilla limosa |        | =;:=;:=;:= <br>=::=::=::=                     |                 | Semi solida (Molto duro)<br>Plastica           |                               |              | 1.50<br>0.85                   |                   | 209.5<br>54.7                    | 296<br>165                                 |
|              |                               |               |            |                 |                                                                |        | =::=::=::=                                    |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                |        | =;:=;:=;:= <br>==:== <br>                     |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                | 17.30  | =::=::=::= <br>=::=::=::= <br>=::=::=::=      |                 |                                                |                               |              |                                |                   |                                  |                                            |
| 16.6         | 11.3                          | 0.23          | 1.7        | 2.82            | limo argilloso-argilla limosa                                  |        | =::=::=::=                                    |                 | Plastica                                       |                               |              | 0.95                           |                   | 63.0                             | 182                                        |
| 22.7         | 15.9                          | 0.40          | 2.0        | 2.72            | limo argilloso-argilla limosa                                  | 17.60  | =;:=;:=;:= <br>=;:=::=:                       |                 | Solido-plastica (Duro)                         |                               |              | 1.16                           |                   | 94.3                             | 222                                        |
|              |                               |               |            |                 |                                                                |        | =::=::=::=                                    |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                |        | =::=::=                                       |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                |        |                                               |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                |        |                                               |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                |        |                                               |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                |        |                                               |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                |        |                                               |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                |        |                                               |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                |        |                                               |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                |        |                                               |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                |        |                                               |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               |            |                 |                                                                |        |                                               |                 |                                                |                               |              |                                |                   |                                  |                                            |
|              |                               |               | l          | l               | l                                                              |        |                                               |                 |                                                |                               | ]            |                                | [                 |                                  |                                            |


Comune Faenza
Via Monte Sant'Andrea
Localita' Granarolo Faentina
Committente Granfrutta Zani
Data 17-feb-12

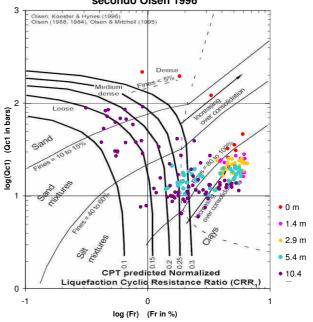
Numero prova **6** Quota falda 2.60




S.G.T. sas. di Van Zulphen Albert & C. Via Matteotti 50 48012 Bagnacavallo (RA) www.geo55.com







#### Cross-plot Qc1N verso Bq (Robertson 1990)



#### Cross-plot Qc1N verso Fr per la verifica della liquefazione secondo Robertson 1996



#### Cross-plot Qc1N verso Fr per la verifica della liquefazione secondo Olsen 1996



#### Litotipo secondo Robertson 1990

| Litotipo s | secondo Robertson 1990                |
|------------|---------------------------------------|
| Zone       | Tipo di comportamento                 |
|            |                                       |
| 9          | Terreni molto duri a grana fine       |
| 8          | Sabbia molto densa e sabbia argillosa |
| 7          | Sabbia ghiaosa – sabbia densa         |
| 6          | Sabbia – sabbia limosa                |
| 5          | Sabbia limosa – limo sabbioso         |
| 4          | Limo argilloso – argilla limosa       |
| 3          | Argilla limoso – argilla              |
| 2          | Torba                                 |
| 1          | Terreni fini sensitivi                |

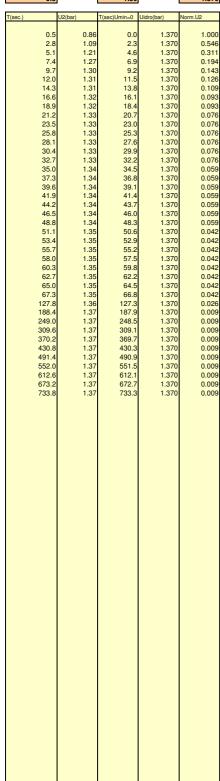
Potenziale di liquefacibilita

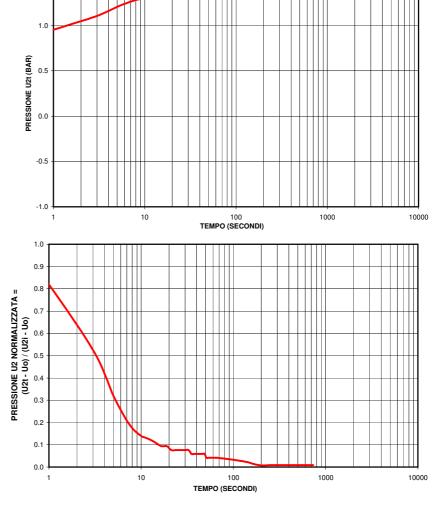
| Potenziale di liquefacibilità |                                                                                                                                                 |  |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Zone A                        | Liquefazione ciclica possibile -<br>dipendente da ampiezza e tempo<br>del carico ciclico.                                                       |  |
| Zone B                        | Liquefazione improbabile.                                                                                                                       |  |
| Zone C                        | Liquefazione fluida<br>e liquefazione ciclica possibile -<br>dipendente da plasticità e sensitività,<br>da ampiezza e tempo del carico ciclico. |  |

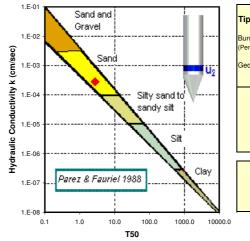
Comune Faenza
Via Monte Sant'Andrea
Localita' Granarolo Faentina
Committente Granfrutta Zani
Data 24-gen-12

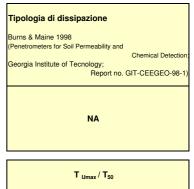
#### CPTU Profondità (m)

**1** 15.00


| Tmax (sec) |       |
|------------|-------|
|            | 188.4 |
| Tmin (sec) |       |
|            | 0.5   |


| Profondita | Ultima |
|------------|--------|
| Falda      | Uo opp |
| m          | Ufalda |
| 1.30       |        |
|            |        |


| lettura |  |
|---------|--|
| ure     |  |
| (bar)   |  |
| 1.370   |  |


1.5

| 1 | (Parez & Fauriel 1988) |              |           |
|---|------------------------|--------------|-----------|
|   |                        | Permeabilità | Litologia |
|   | T50 (sec)              | Kh (cm/sec)  |           |
|   | 3                      | 2.82E-04     | sabbia    |







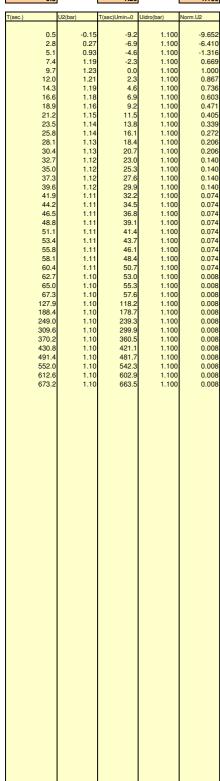


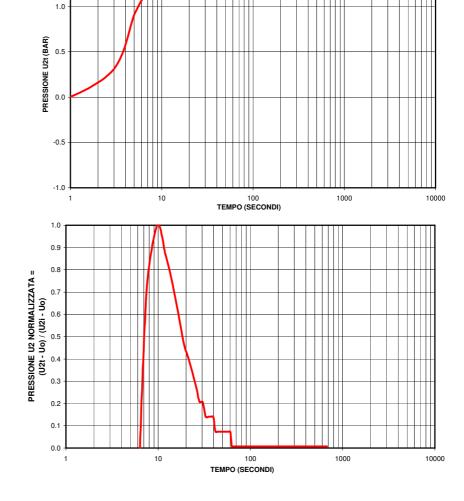
NΑ

Comune Faenza Monte Sant'Andrea Via Granarolo Faentina Localita Granfrutta Zani 24-gen-12 Committente Data

#### **CPTU** Profondità (m)

2 12.20

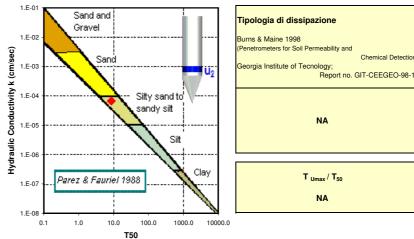

| Tmax (sec) |     |
|------------|-----|
|            | 9.7 |
| Tmin (sec) |     |
|            | 0.5 |


| Profon | dita |  |
|--------|------|--|
| Falda  |      |  |
| m      |      |  |
|        | 1.20 |  |



1.5

| (1 | Parez & Faur | iel 1988)    |                               |
|----|--------------|--------------|-------------------------------|
|    |              | Permeabilità | Litologia                     |
| T) | 50 (sec)     | Kh (cm/sec)  |                               |
|    | 9            | 6.71E-05     | sabbia limosa a limo sabbioso |






Chemical Detection

NA

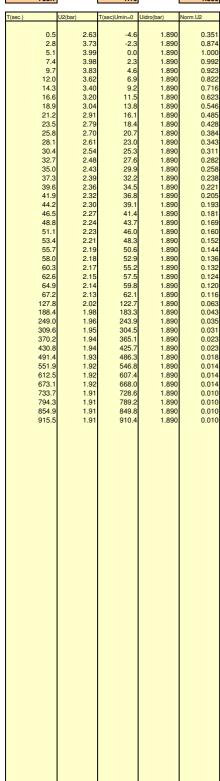
NΑ

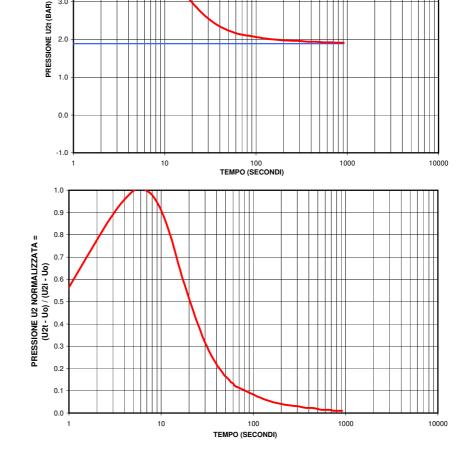


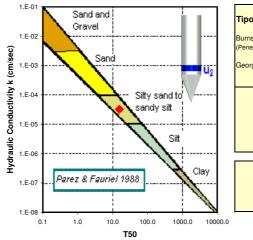
S.G.T. s.as. di Van Zulphen Albert & C. Via Matteotti 50 48012 Bagnacavallo (RA) www.geo55.com

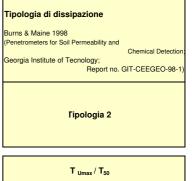
#### **CPTU** Profondità (m)

3 20.00


| Profon | dita |
|--------|------|
| Falda  |      |
| m      |      |
|        | 1.10 |


5.0


4.0


3.0











0.33

Comune Faenza Monte Sant'Andrea Via Granarolo Faentina Localita Committente Granfrutta Zani 24/01/2012 Data



S.G.T. s.as. di Van Zulphen Albert & C. Via Matteotti 50 48012 Bagnacavallo (RA) www.geo55.com

#### **CPTU** Profondità (m)

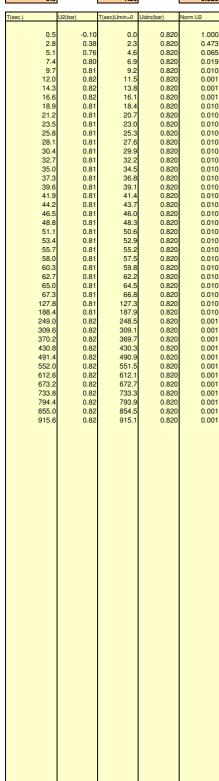
4 9.40

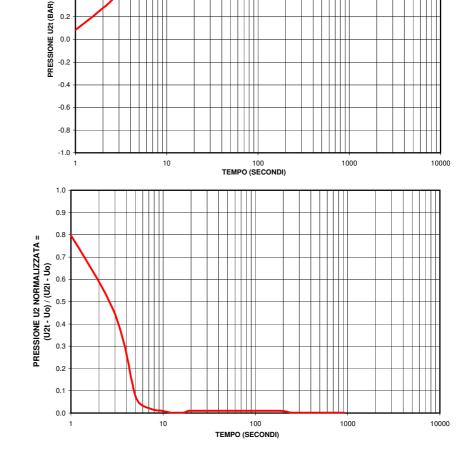
12.0

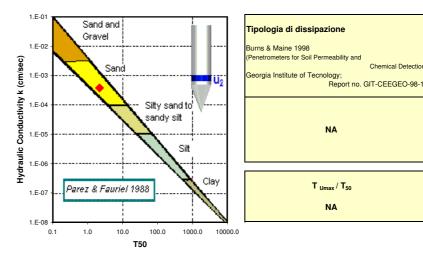
| Profond | dita |
|---------|------|
| Falda   |      |
| m       |      |
|         | 1.20 |

1.0

0.8


0.6


0.4


0.2

0.0

|   | (Parez & Fauriel 1988) |              |           |
|---|------------------------|--------------|-----------|
| ı |                        | Permeabilità | Litologia |
| ŀ | T50 (sec)              | Kh (cm/sec)  |           |
|   | 2                      | 3.78E-04     | sabbia    |

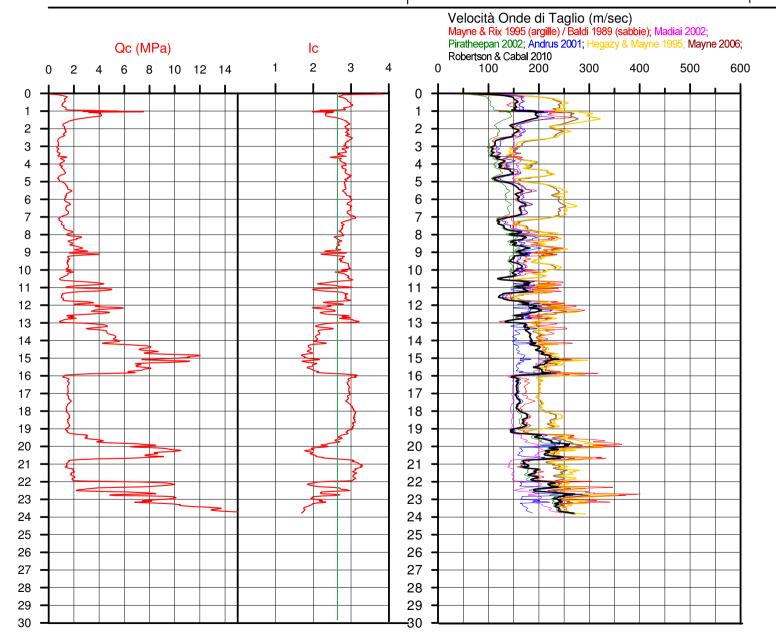




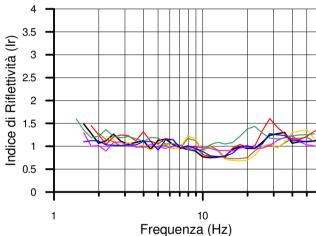


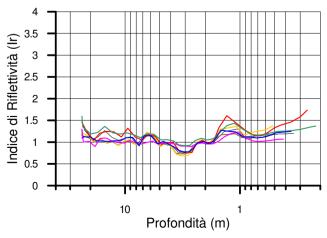
Comune Faenza

Via Monte Sant'Andrea Granarolo Faentina Localita'


24/01/2012 Data

# **CPT**


Falda 2.1 metri



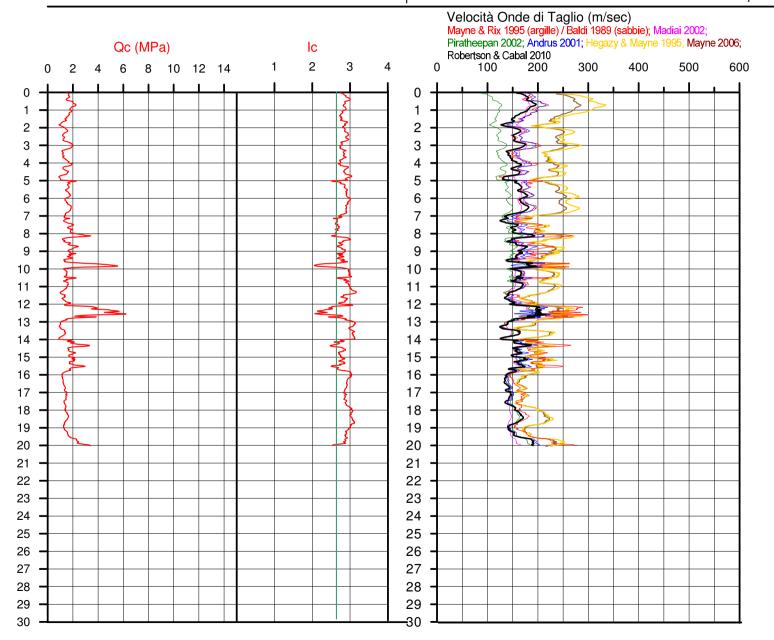

Via Matteotti 50 48012 Bagnacavallo (RA)



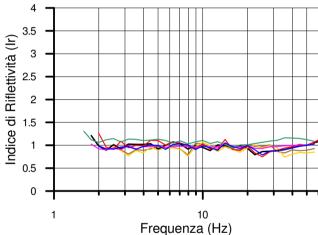
| Autore                                        | Vs24 |
|-----------------------------------------------|------|
| Andrus et.al. 2001                            | 163  |
| Piratheepan 2002                              | 149  |
| Madiai 2002                                   | 165  |
| Mayne & Rix 1995 (clays) / Baldi 1989 (sands) | 178  |
| Hegazy & Mayne 1995                           | 212  |
| Mayne 2006                                    | 216  |
| Robertson Cabal 2010                          | 163  |

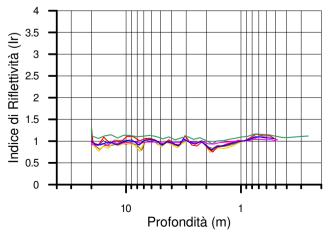





Via Monte Sant'Andrea Localita' Granarolo Faentina

24-gen-12 Data


**CPT** 


Falda 2.2 metri

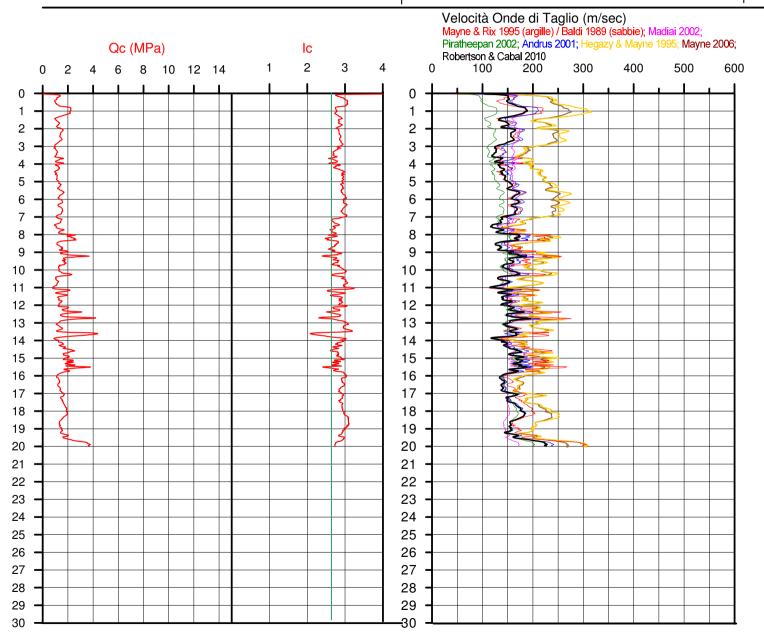




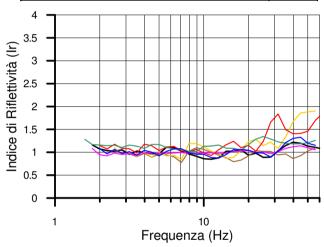
| Autore                                        | Vs20 |
|-----------------------------------------------|------|
| Andrus et.al. 2001                            | 166  |
| Piratheepan 2002                              | 141  |
| Madiai 2002                                   | 158  |
| Mayne & Rix 1995 (clays) / Baldi 1989 (sands) | 174  |
| Hegazy & Mayne 1995                           | 210  |
| Mayne 2006                                    | 215  |
| Robertson Cabal 2010                          | 157  |

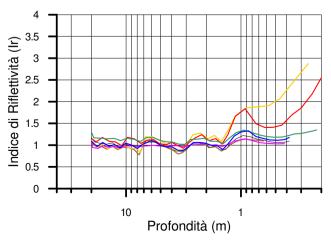





Via Monte Sant'Andrea Localita' Granarolo Faentina

24-gen-12 Data


**CPT** 


Falda 2 metri

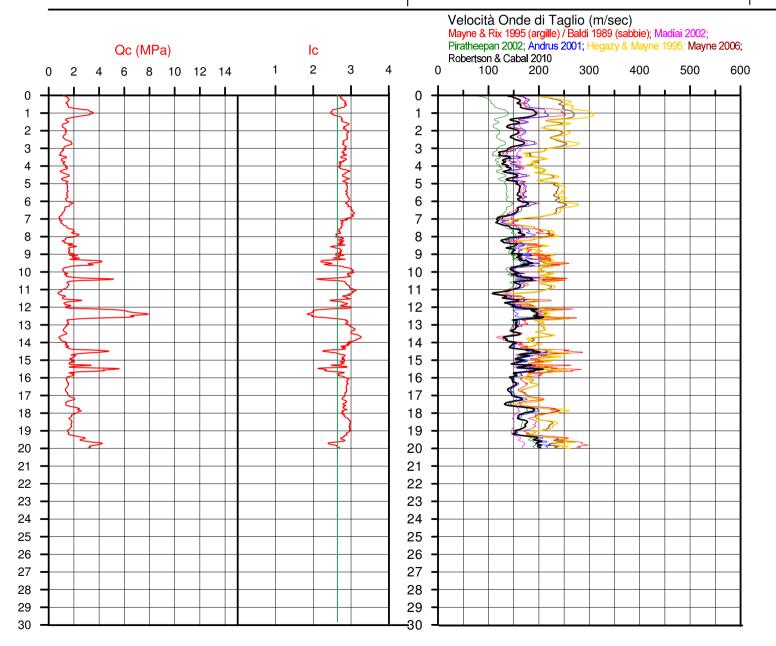




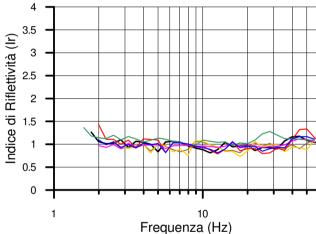
| Autore                                        | Vs20 |
|-----------------------------------------------|------|
| Andrus et.al. 2001                            | 161  |
| Piratheepan 2002                              | 137  |
| Madiai 2002                                   | 157  |
| Mayne & Rix 1995 (clays) / Baldi 1989 (sands) | 165  |
| Hegazy & Mayne 1995                           | 206  |
| Mayne 2006                                    | 205  |
| Robertson Cabal 2010                          | 151  |

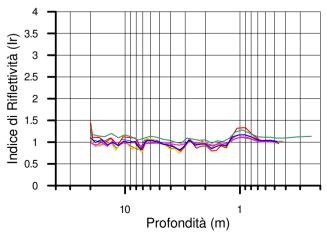





Via Monte Sant'Andrea Granarolo Faentina Localita'

Data 24/01/2012


# **CPT**

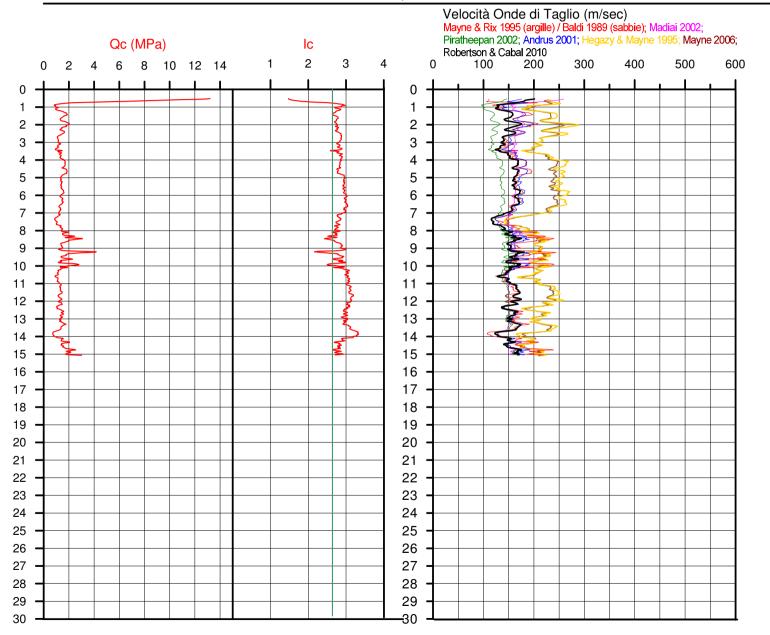

Falda 2.3 metri



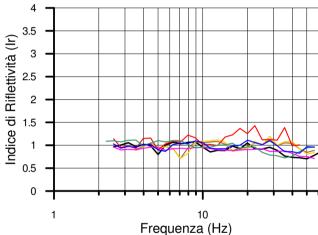


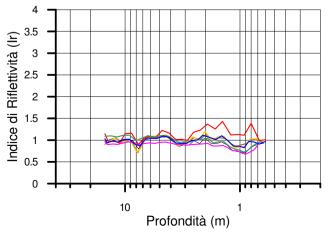
| Autore                                        | Vs20 |
|-----------------------------------------------|------|
| Andrus et.al. 2001                            | 163  |
| Piratheepan 2002                              | 140  |
| Madiai 2002                                   | 159  |
| Mayne & Rix 1995 (clays) / Baldi 1989 (sands) | 173  |
| Hegazy & Mayne 1995                           | 206  |
| Mayne 2006                                    | 209  |
| Robertson Cabal 2010                          | 154  |






Monte Sant'Andrea Via Localita' Granarolo Faentina


Data 17-feb-12 **CPT** 

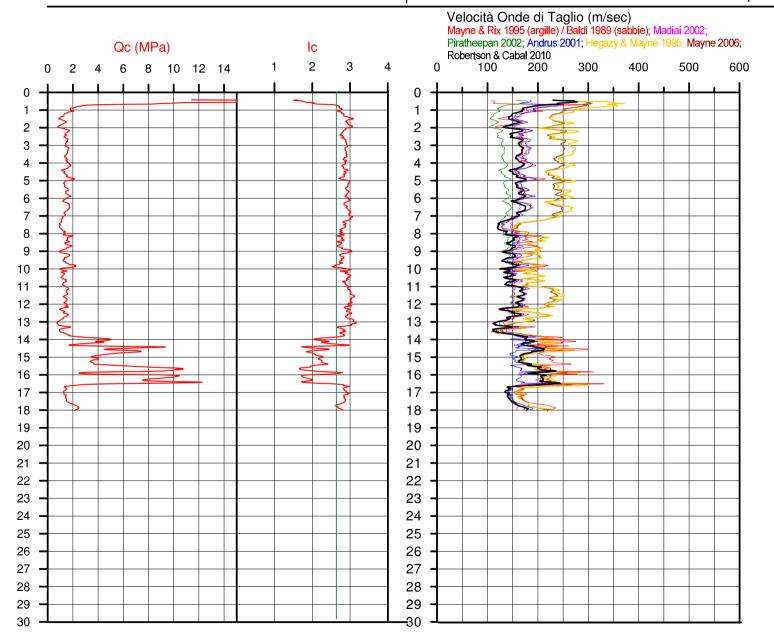

Falda 2.6 metri



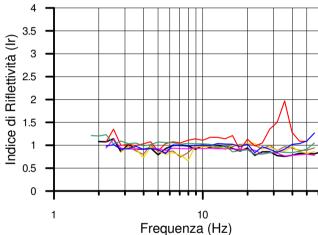


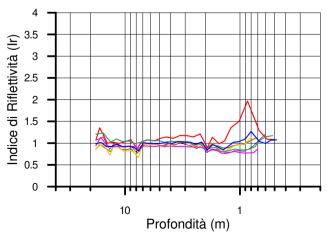
| Autore                                        | Vs15 |
|-----------------------------------------------|------|
| Andrus et.al. 2001                            | 162  |
| Piratheepan 2002                              | 135  |
| Madiai 2002                                   | 158  |
| Mayne & Rix 1995 (clays) / Baldi 1989 (sands) | 161  |
| Hegazy & Mayne 1995                           | 213  |
| Mayne 2006                                    | 216  |
| Robertson Cabal 2010                          | 153  |






Via Monte Sant'Andrea Localita' Granarolo Faentina


Data 17-feb-12 **CPT** 


Falda 2.6 metri





| Autore                                        | Vs18 |
|-----------------------------------------------|------|
| Andrus et.al. 2001                            | 162  |
| Piratheepan 2002                              | 142  |
| Madiai 2002                                   | 161  |
| Mayne & Rix 1995 (clays) / Baldi 1989 (sands) | 171  |
| Hegazy & Mayne 1995                           | 205  |
| Mayne 2006                                    | 209  |
| Robertson Cabal 2010                          | 157  |

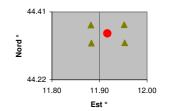




# **VALUTAZIONE PARAMETRI SISMICI DEL SITO**

**CON RIFERIMENTO AL PROGETTO SECONDO DECRETO MINISTRIALE DEL 14-01-2008** 




Ubicazione del sito

Comune

Località Granarolo Faentina

> Google Earth (WSG84) NTC2008 (ED50) 11.9165 11.9147

Longitudine (° decimali) Latitudine (° decimali) 44.3500 44.3511



I 4 nodi del reticolo di riferimento per l'azione sismica intorno il punto di interesse

| ID    | Distanza al punta di interesse di (m) | Longitudine | Latitudine |
|-------|---------------------------------------|-------------|------------|
| 17404 | 3.741                                 | 11.882      | 44.374     |
| 17405 | 3.875                                 | 11.952      | 44.375     |
| 17626 | 4.022                                 | 11.883      | 44.324     |
| 17627 | 4.105                                 | 11.953      | 44.325     |

| Tipi di Costruzione |                                                                                                         |         |    |
|---------------------|---------------------------------------------------------------------------------------------------------|---------|----|
|                     | Opere provissorie - Opere provvisionali - Strutture in fase costruttiva                                 | < = 10  |    |
| 2                   | Opere ordinarie, ponti, opere infrastrutturali e dighe di dimensioni contenute o di importanza normale  | > = 50  | 50 |
| 3                   | Grandi opere, ponti, opere infrastrutturali ed dighe di<br>grande dimensioni o di importanza strategica | > = 100 |    |

| Classe d'uso |                                                        | Coefficiente Cu | Progetto<br>Coefficiente Cu |
|--------------|--------------------------------------------------------|-----------------|-----------------------------|
| 1            | Occasionali presenza di persone                        | 0.7             |                             |
| 2            | Normali affollamenti                                   | 1               | 4                           |
| 3            | Affollamenti significativi                             | 1.5             | •                           |
| 4            | Edifici confunzioni pubbliche o strategiche importanti | 2               |                             |

# Periodo di riferimento per l'azione sismica Vr = Vn \* Cu = 50 anni

|              |                                         | Probabilità di   | Periodo di ritorno |
|--------------|-----------------------------------------|------------------|--------------------|
|              |                                         | superamento nel  | dell'azione        |
|              |                                         | periodo di       | sismica Tr (anni)  |
|              |                                         | riferimento Vr = |                    |
| Stati Limiti |                                         | 50 anni Pvr      |                    |
| SLO          | Stato Limite di Operatività             | 81%              | 30                 |
| SLD          | Stato Limite di Danno                   | 63%              | 50                 |
| SLV          | Stato Limite di salvaguardia della Vita | 10%              | 475                |
| SLC          | Stato Limite di prevenzione del Colasso | 5%               | 975                |

#### Valori sismici Decreto Ministeriale 14-01-2008

|                                         | a <sub>g</sub> (m/sec <sup>2</sup> ) | a <sub>g</sub> /g | Fo    | Tc*   |
|-----------------------------------------|--------------------------------------|-------------------|-------|-------|
| Stato Limite di Operatività             | 0.613                                | 0.062             | 2.430 | 0.260 |
| Stato Limite di Danno                   | 0.782                                | 0.080             | 2.413 | 0.270 |
| Stato Limite di salvaguardia della Vita | 1.948                                | 0.199             | 2.405 | 0.308 |
| Stato Limite di prevenzione del Colasso | 2.476                                | 0.252             | 2.445 | 0.320 |

#### Valori sismici DELIBERA 112 del 2007 REGIONE EMILIA-ROMAGNA

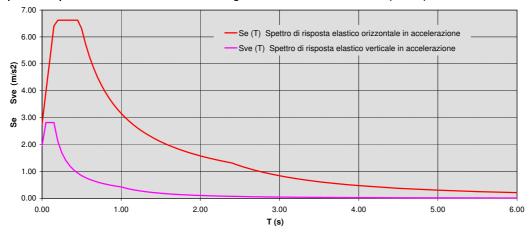
|                                                       | a <sub>g</sub> (m/sec <sup>2</sup> ) | a <sub>g</sub> /g | M     |
|-------------------------------------------------------|--------------------------------------|-------------------|-------|
| Per periodo di ritorno = 475 anni in comune di Faenza | 2.011                                | 0.205             | 5.663 |

| Valori applicati                           | $\mathbf{a}_{\mathrm{g}}$ | a <sub>g</sub> /g | Fo    | TC*   |
|--------------------------------------------|---------------------------|-------------------|-------|-------|
| 3. Stato Limite di salvaguardia della Vita | 1.948                     | 0.199             | 2.405 | 0.308 |

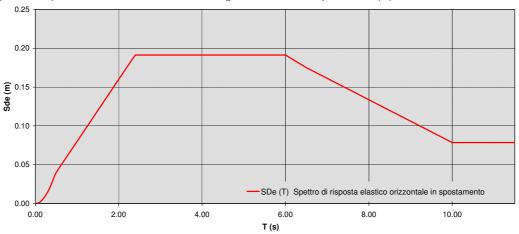


| Rapporto terreno coesivo / terreno granulare (m/m)                                                   |      | 16.27 / 7.3             |
|------------------------------------------------------------------------------------------------------|------|-------------------------|
| Massimo profondità indagato (m)                                                                      |      | 23.70                   |
|                                                                                                      |      |                         |
|                                                                                                      |      | TIPO DI SUOLO SUGGERITO |
| Velocità di propagazione onde di taglio Vs (Andrus 2001) (m/sec)                                     | 163  | D o S1                  |
| Velocità di propagazione onde di taglio Vs (Piratheepan 2002) (m/sec)                                | 149  | D o S1                  |
| Velocità di propagazione onde di taglio Vs (Madiai 2002) (m/sec)                                     | 165  | D o S1                  |
| Velocità di propagazione onde di taglio Vs (Mayne & Rix 1995 (argille) / Baldi 1989 (sabbie) (m/sec) | 178  | D o S1                  |
| Velocità di propagazione onde di taglio Vs (Hegazy & Mayne 1995) (m/sec)                             | 216  | С                       |
| Velocità di propagazione onde di taglio Vs (Mayne 2006) (m/sec)                                      | 212  | С                       |
|                                                                                                      |      |                         |
| Resistenza penetrometrica equivalente Nspt (Norme AGI per terreni granulari) (N)                     | 12.4 | D o S1                  |
| Resistenza al taglio non drenata equivalente Cu (Norme AGI per terreni coesivi) (kPa)                | 80   | С                       |

| C |
|---|
|   |
|   |


TIPO DI SUOLO STIMATO

| ACCELERAZIONE ED AMPLIFICAZIONE D.M. 14-01-2008 |                           | Stato Limite di salvaguardi | a della Vita Tr = 475 |
|-------------------------------------------------|---------------------------|-----------------------------|-----------------------|
| Accelerazione massima al substrato sismico      | amax al substrato sismico | 1.948 m/sec2                | 0.199 g               |
| Amplificazione per tipo di suolo C              | Ss                        | 1.4                         | 41                    |
| Amplificazione topografica                      | ST                        | 1.0                         | 00                    |
| S totale                                        | Ss * ST                   | 1.4                         | 41                    |
| Accelerazione massima in superficie             | amax in superficie        | 2.753 m/sec2                | 0.281 g               |
|                                                 |                           |                             |                       |


| PERIODI DI SEPARAZIONI DEI RAMI DELLO SPETTRO |               |   |             |           |
|-----------------------------------------------|---------------|---|-------------|-----------|
|                                               | Tipo di suolo | С | ORIZZONTALE | VERTICALE |
|                                               | Tb            |   | 0.16        | 0.05      |
|                                               | Tc            |   | 0.48        | 0.15      |
|                                               | Td            |   | 2.39        | 1.00      |
|                                               | To            |   | 6.00        |           |

| PARAMETRI DI PICCO                |    |                          |
|-----------------------------------|----|--------------------------|
| Accelerazione orizzontale massima | ag | 2.753 m/sec <sup>2</sup> |
| Velocità orizzontale massima      | vg | 0.21 m/sec               |
| Spostamento orizzontale massimo   | dg | 0.08 m                   |

# Spettro di risposta elastico allo Stato Limite di salvaguardia della Vita in accelerazione (m/sec2)



# Spettro di risposta elastico allo Stato Limite di salvaguardia della Vita in spostamento (m)



| DATI SISMICI           | DERIVATI DEL TERRENO                             | FONDAZIONI E PENDI | OPERE DI SOSTEGNO |
|------------------------|--------------------------------------------------|--------------------|-------------------|
| a <sub>max</sub> /g    | Accelerazione orrizontale massima atteso al sito | 0.2                | 281               |
| βs                     | Coefficiente di riduzione a <sub>g</sub> /g      | 0.280              | 0.310             |
| K <sub>h terreno</sub> | Coefficiente sismico orizzontale                 | 0.079              | 0.087             |
| K <sub>v terreno</sub> | Coefficiente sismico verticale                   | 0.039              | 0.043             |

24/01/2012

Data

17

18

19

20

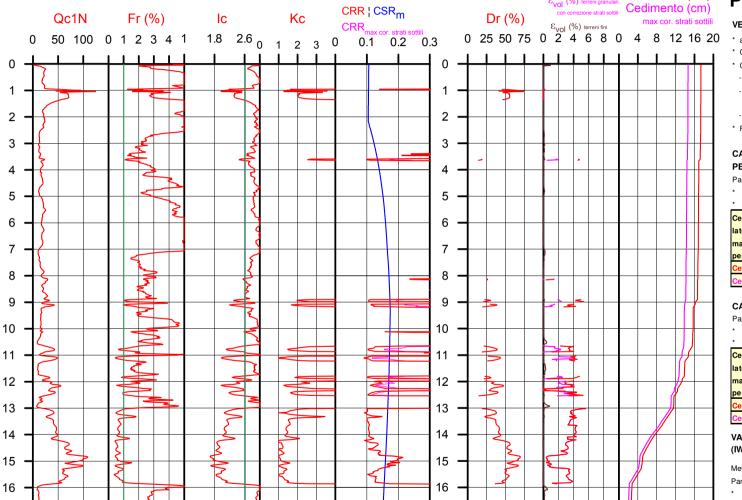
**CPT** 

Falda 2.1 metri

| DECRETO MINISTRIALE 14-01-2008 |                         |  |
|--------------------------------|-------------------------|--|
| latitudine 44.3511°            | amax substrato (m/sec2) |  |
| longitudine 11.9165°           | 1.948                   |  |
| tipo di suolo                  | fattore amplificazione  |  |
| С                              | 1.414                   |  |
| amplificazione topografica     | amax al p.c. (m/sec2)   |  |
| 1.000                          | 2.753                   |  |
|                                | magnitude               |  |
|                                | 5.500                   |  |

| comune                     | amax substrato (m/sec2) |
|----------------------------|-------------------------|
| Faenza                     | 2.011                   |
|                            | fattore amplificazione  |
|                            | 1.500                   |
| amplificazione topografica | amax al p.c. (m/sec2)   |
| 1.000                      | 3.017                   |
|                            | magnitude               |
|                            | 5.500                   |

Cedimento (cm)


DELIBERA RECIONALE E D. 2007

ε<sub>vol</sub> (%) terreni granulari



**Società di** S.G.T. sas di Van Zutphen Albert & C.

Via Matteotti 50 48012 Bagnacavallo (RA)



17

18

19

20

# **PROCEDURA**

#### **VERIFICA DI LIQUEFAZIONE SECONDO ROBERSTON & CABAL 2009**

- \* amax e fattore di amplificazione secondo DECRETO MINISTRIALE 14-01-2008
- \* CSR 5.5 secondo ldriss & Boulanger 2004 (Cyclic Stress Ratio corretto per magnitudine)
- \* CRR (Cyclic Resistance Ratio) calcolato con
- Qc1N secondo Idriss & Boulanger 2004
- Fattore Kc per la correzione di Qc1N to Qc1Ncs per granulometria calcolato da lc secondo Robertson & Cabal 2009
- Fattore Kh per la correzione di Qc1N<sub>cs</sub> per strati sottili di sabbia in mezzo argilla
- \* Fattore di sicurezza per liquefazione: Fslig = CRR 7.5 / CSR 5.5

# CALCOLO DEL CEDIMENTO E DELL' INDICE DI SPOSTAMENTO LATERALE PER TERRENI GRANULARI (ISHIHARA & YOSEMINE 1993)

Parametri utilizzati:

- \* Densità Relativa Dr secondo Tutsaoki 1990
- Fattore di sicurezza per liquefazione come sopra

| Taktoro di ologiozza poi induciazione como copia |                   |              |
|--------------------------------------------------|-------------------|--------------|
| Cedimento ed indice di spostamento               | Cedimento         | Indice di    |
| laterale calcolato tra piano campagna e          | terreni granulari | spostamento  |
| massima profondità della prova                   |                   | laterale LDI |
| per terreni granulari                            | (cm)              | (cm)         |
| Cedimento totale                                 | 16                | 180          |
| Cedimento totale considerando strati sottili     | 12                | 166          |

#### CALCOLO DEL CEDIMENTO PER TERRENI FINI (ROBERTSON 2009)

Parametri utilizzati:

- Qc1N secondo Idriss & Boulanger 2004
- Fattore di sicurezza per liquefazione come sopra

| Cedimento                               | Cedimento    | Cedimento        |
|-----------------------------------------|--------------|------------------|
| laterale calcolato tra piano campagna e | terreni fini | totale           |
| massima profondità della prova          |              | fini + granulari |
|                                         |              |                  |
| per terreni fini                        | (cm)         | (cm)             |
| per terreni fini Cedimento totale       | (cm)         | (cm)             |

# VALUTAZIONE DELL' INDICE I<sub>L</sub> DEL POTENZIALE DI LIQUEFAZIONE

(IWASAKI 1982) (Riferimento Linee Guida AGI 2005; pagina 105)

Metodo di valutazione degli effetti di liquefazione basato su Fsliq e la profondità, Parametri utilizzati:

- \* Fattore di sicurezza per liquefazione come sopra
- \* Profondità

| INDICE I <sub>L</sub> DEL POTENZ<br>senza correzione per<br>strati sottili | con correzione per<br>strati sottili | NE           | POTENZIALE DI<br>ROTTURA |
|----------------------------------------------------------------------------|--------------------------------------|--------------|--------------------------|
| 3.7                                                                        | 2.3                                  | IL <=5       | BASSO                    |
|                                                                            |                                      | 5 < IL <= 15 | ELEVATO                  |
|                                                                            |                                      | IL > 15      | ESTREMAMENTE<br>ELEVATO  |

24-gen-12

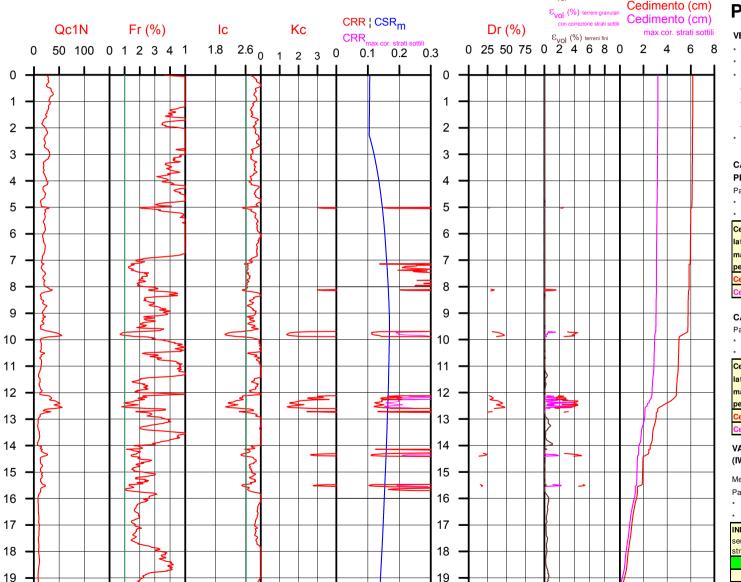
Data

20

Falda

2.2 metri

| DECRETO MINISTRIALE 14-01-2008 |                         |  |
|--------------------------------|-------------------------|--|
| latitudine 44.3511°            | amax substrato (m/sec2) |  |
| longitudine 11.9165°           | 1.948                   |  |
| tipo di suolo                  | fattore amplificazione  |  |
| С                              | 1.414                   |  |
| amplificazione topografica     | amax al p.c. (m/sec2)   |  |
| 1.000                          | 2.753                   |  |
|                                | magnitude               |  |
|                                | 5.500                   |  |


|                  | DELIBERA REGIONALE E.R. 2007 |                         |  |  |
|------------------|------------------------------|-------------------------|--|--|
| ec2)             | comune                       | amax substrato (m/sec2) |  |  |
| 1.948            | Faenza                       | 2.011                   |  |  |
| е                |                              | fattore amplificazione  |  |  |
| 1.414            |                              | 1.500                   |  |  |
| 2)               | amplificazione topografica   | amax al p.c. (m/sec2)   |  |  |
| 2.753            | 1.000                        | 3.017                   |  |  |
|                  |                              | magnitude               |  |  |
| 5.500            |                              | 5.500                   |  |  |
| $\epsilon_{vol}$ | (%) terreni granulari        |                         |  |  |

DELIBERA REGIONALE E R. 2007



Società di S.G.T. sas di Van Zutphen Albert & C.

Via Matteotti 50 48012 Bagnacavallo (RA)



20

# **PROCEDURA**

#### **VERIFICA DI LIQUEFAZIONE SECONDO ROBERSTON & CABAL 2009**

- \* amax e fattore di amplificazione secondo DECRETO MINISTRIALE 14-01-2008
- \* CSR 5.5 secondo ldriss & Boulanger 2004 (Cyclic Stress Ratio corretto per magnitudine)
- \* CRR (Cyclic Resistance Ratio) calcolato con
- Qc1N secondo Idriss & Boulanger 2004
- Fattore Kc per la correzione di Qc1N to Qc1Ncs per granulometria calcolato da lc secondo Robertson & Cabal 2009
- Fattore Kh per la correzione di Qc1N<sub>cs</sub> per strati sottili di sabbia in mezzo argilla
- \* Fattore di sicurezza per liquefazione: Fslig = CRR 7.5 / CSR 5.5

# CALCOLO DEL CEDIMENTO E DELL' INDICE DI SPOSTAMENTO LATERALE PER TERRENI GRANULARI (ISHIHARA & YOSEMINE 1993)

Parametri utilizzati:

- \* Densità Relativa Dr secondo Tutsaoki 1990
- Fattore di sicurezza per liquefazione come sopra

| Cedimento ed indice di spostamento           | Cedimento         | Indice di    |
|----------------------------------------------|-------------------|--------------|
| laterale calcolato tra piano campagna e      | terreni granulari | spostamento  |
| massima profondità della prova               |                   | laterale LDI |
| per terreni granulari                        | (cm)              | (cm)         |
| Cedimento totale                             | 4                 | 41           |
| Cedimento totale considerando strati sottili | _                 | _            |

#### CALCOLO DEL CEDIMENTO PER TERRENI FINI (ROBERTSON 2009)

Parametri utilizzati:

- Qc1N secondo Idriss & Boulanger 2004
- Fattore di sicurezza per liquefazione come sopra

| · anti por reportation of the control of the |              |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|
| Cedimento                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cedimento    | Cedimento        |
| laterale calcolato tra piano campagna e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | terreni fini | totale           |
| massima profondità della prova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | fini + granulari |
| per terreni fini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (cm)         | (cm)             |
| Cedimento totale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2            | 6                |
| Cedimento totale considerando strati sottili                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2            | 3                |

# VALUTAZIONE DELL' INDICE I<sub>L</sub> DEL POTENZIALE DI LIQUEFAZIONE (IWASAKI 1982) (Riferimento Linee Guida AGI 2005; pagina 105)

Metodo di valutazione degli effetti di liquefazione basato su Fsliq e la profondità,

- \* Fattore di sicurezza per liquefazione come sopra
- \* Profondità

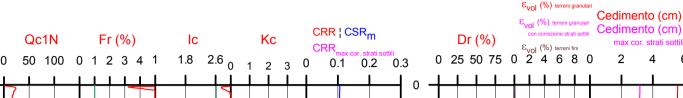
| INDICE I <sub>L</sub> DEL POTENZIALE DI LIQUEFAZIONE |                                      |              | POTENZIALE DI           |
|------------------------------------------------------|--------------------------------------|--------------|-------------------------|
| senza correzione per<br>strati sottili               | con correzione per<br>strati sottili |              | ROTTURA                 |
| 0.6                                                  | 0.0                                  | IL <=5       | BASSO                   |
|                                                      |                                      | 5 < IL <= 15 | ELEVATO                 |
|                                                      |                                      | IL > 15      | ESTREMAMENTE<br>ELEVATO |

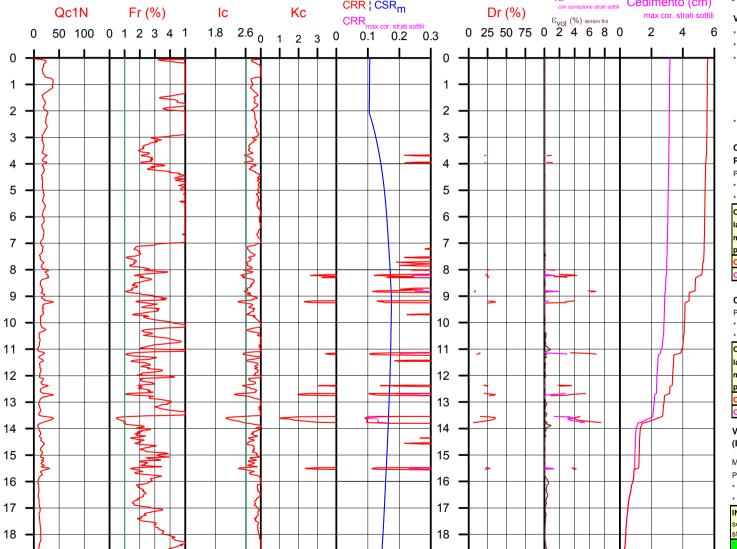
24-aen-12

Data

19

20


Falda 2 metri


**DECRETO MINISTRIALE 14-01-2008** 44.3511° longitudine 11.9165° tipo di suolo fattore amplificazione amplificazione topografica amax al p.c. (m/sec2) 2.753 nagnitude 5.500

| DELIBERA REGIONALE E.R. 2007 |                         |  |  |
|------------------------------|-------------------------|--|--|
| omune                        | amax substrato (m/sec2) |  |  |
| Faenza                       | 2.011                   |  |  |
|                              | fattore amplificazione  |  |  |
|                              | 1.500                   |  |  |
| mplificazione topografica    | amax al p.c. (m/sec2)   |  |  |
| 1.000                        | 3.017                   |  |  |
|                              | magnitude               |  |  |
|                              | 5.500                   |  |  |
|                              |                         |  |  |



Via Matteotti 50 48012 Bagnacavallo (RA)





19

20

# **PROCEDURA**

#### **VERIFICA DI LIQUEFAZIONE SECONDO ROBERSTON & CABAL 2009**

- \* amax e fattore di amplificazione secondo DECRETO MINISTRIALE 14-01-2008
- \* CSR 5.5 secondo ldriss & Boulanger 2004 (Cyclic Stress Ratio corretto per magnitudine)
- \* CRR (Cyclic Resistance Ratio) calcolato con
- Qc1N secondo Idriss & Boulanger 2004
- Fattore Kc per la correzione di Qc1N to Qc1Ncs per granulometria calcolato da lc secondo Robertson & Cabal 2009
- Fattore Kh per la correzione di Qc1N<sub>cs</sub> per strati sottili di sabbia in mezzo argilla
- \* Fattore di sicurezza per liquefazione: Fslig = CRR 7.5 / CSR 5.5

# CALCOLO DEL CEDIMENTO E DELL' INDICE DI SPOSTAMENTO LATERALE PER TERRENI GRANULARI (ISHIHARA & YOSEMINE 1993)

Parametri utilizzati:

- \* Densità Relativa Dr secondo Tutsaoki 1990
- Fattore di sicurezza per liquefazione come sopra

| Cedimento ed indice di spostamento           | Cedimento         | Indice di    |
|----------------------------------------------|-------------------|--------------|
| laterale calcolato tra piano campagna e      | terreni granulari | spostamento  |
| massima profondità della prova               |                   | laterale LDI |
| per terreni granulari                        | (cm)              | (cm)         |
| Cedimento totale                             | 4                 | 4            |
| Cedimento totale considerando strati sottili | _                 |              |

#### CALCOLO DEL CEDIMENTO PER TERRENI FINI (ROBERTSON 2009)

Parametri utilizzati:

- Qc1N secondo Idriss & Boulanger 2004
- Fattore di sicurezza per liquefazione come sopra

| Cedimento                               | Cedimento    | Cedimento        |
|-----------------------------------------|--------------|------------------|
| laterale calcolato tra piano campagna e | terreni fini | totale           |
| massima profondità della prova          |              | fini + granulari |
|                                         |              | , ,              |
| per terreni iini                        | (cm)         | (cm)             |
| per terreni fini Cedimento totale       | (cm)<br>2    | (cm)             |

#### VALUTAZIONE DELL' INDICE I, DEL POTENZIALE DI LIQUEFAZIONE (IWASAKI 1982) (Riferimento Linee Guida AGI 2005; pagina 105)

Metodo di valutazione degli effetti di liquefazione basato su Fsliq e la profondità, Parametri utilizzati:

Fattore di sicurezza per liquefazione come sopra

Profondità

| INDICE I <sub>L</sub> DEL POTENZIALE DI LIQUEFAZIONE                  |     |              | POTENZIALE DI<br>ROTTURA |
|-----------------------------------------------------------------------|-----|--------------|--------------------------|
| senza correzione per con correzione per strati sottili strati sottili |     |              |                          |
| 0.8                                                                   | 0.2 | IL <=5       | BASSO                    |
|                                                                       |     | 5 < IL <= 15 | ELEVATO                  |
|                                                                       |     | II > 15      | ESTREMAMENTE<br>ELEVATO  |

24/01/2012

Data

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

**CPT** 

Falda

2.3 metri

**DECRETO MINISTRIALE 14-01-2008** 44.3511° longitudine 11.9165° tipo di suolo fattore amplificazione amplificazione topografica amax al p.c. (m/sec2) 2.753 nagnitude 5.500

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

| DELIBERA REGIONALE E.R. 2007 |  |  |  |
|------------------------------|--|--|--|
| amax substrato (m/sec2)      |  |  |  |
| 2.011                        |  |  |  |
| fattore amplificazione       |  |  |  |
| 1.500                        |  |  |  |
| amax al p.c. (m/sec2)        |  |  |  |
| 3.017                        |  |  |  |
| magnitude                    |  |  |  |
| 5.500                        |  |  |  |
|                              |  |  |  |




Società di S.G.T. sas di Van Zutphen Albert & C.

Via Matteotti 50 48012 Bagnacavallo (RA)









#### **VERIFICA DI LIQUEFAZIONE SECONDO ROBERSTON & CABAL 2009**

- \* amax e fattore di amplificazione secondo DECRETO MINISTRIALE 14-01-2008
- \* CSR 5.5 secondo ldriss & Boulanger 2004 (Cyclic Stress Ratio corretto per magnitudine)
- \* CRR (Cyclic Resistance Ratio) calcolato con
- Qc1N secondo Idriss & Boulanger 2004
- Fattore Kc per la correzione di Qc1N to Qc1Ncs per granulometria calcolato da lc secondo Robertson & Cabal 2009
- Fattore Kh per la correzione di Qc1N<sub>cs</sub> per strati sottili di sabbia in mezzo argilla
- \* Fattore di sicurezza per liquefazione: Fslig = CRR 7.5 / CSR 5.5

# CALCOLO DEL CEDIMENTO E DELL' INDICE DI SPOSTAMENTO LATERALE PER TERRENI GRANULARI (ISHIHARA & YOSEMINE 1993)

Parametri utilizzati:

- Densità Relativa Dr secondo Tutsaoki 1990
- Fattore di sicurezza per liquefazione come sonra

| r attoro di ologiozza per ilquolazione como e |                   |              |
|-----------------------------------------------|-------------------|--------------|
| Cedimento ed indice di spostamento            | Cedimento         | Indice di    |
| laterale calcolato tra piano campagna e       | terreni granulari | spostamento  |
| massima profondità della prova                |                   | laterale LDI |
| per terreni granulari                         | (cm)              | (cm)         |
| Cedimento totale                              | 7                 | 63           |
| Cedimento totale considerando strati sottili  | 3                 | 20           |

#### CALCOLO DEL CEDIMENTO PER TERRENI FINI (ROBERTSON 2009)

Parametri utilizzati:

- Qc1N secondo Idriss & Boulanger 2004
- Fattore di sicurezza per liquefazione come sopra

| Cedimento                                    | Cedimento    | Cedimento        |
|----------------------------------------------|--------------|------------------|
| laterale calcolato tra piano campagna e      | terreni fini | totale           |
| massima profondità della prova               |              | fini + granulari |
| per terreni fini                             | (cm)         | (cm)             |
| Cedimento totale                             | 2            | 9                |
| Cedimento totale considerando strati sottili | 2            | 5                |

# VALUTAZIONE DELL' INDICE I, DEL POTENZIALE DI LIQUEFAZIONE (IWASAKI 1982) (Riferimento Linee Guida AGI 2005; pagina 105)

Metodo di valutazione degli effetti di liquefazione basato su Fsliq e la profondità, Parametri utilizzati:

Fattore di sicurezza per liquefazione come sopra

Profondità

| NDICE I <sub>L</sub> DEL POTENZ                                       | POTENZIALE DI<br>ROTTURA |              |              |  |
|-----------------------------------------------------------------------|--------------------------|--------------|--------------|--|
| senza correzione per con correzione per strati sottili strati sottili |                          |              |              |  |
| 1.7                                                                   | 0.2                      | IL <=5       | BASSO        |  |
|                                                                       |                          | 5 < IL <= 15 | ELEVATO      |  |
|                                                                       |                          | IL > 15      | ESTREMAMENTE |  |

17-feb-12

Data

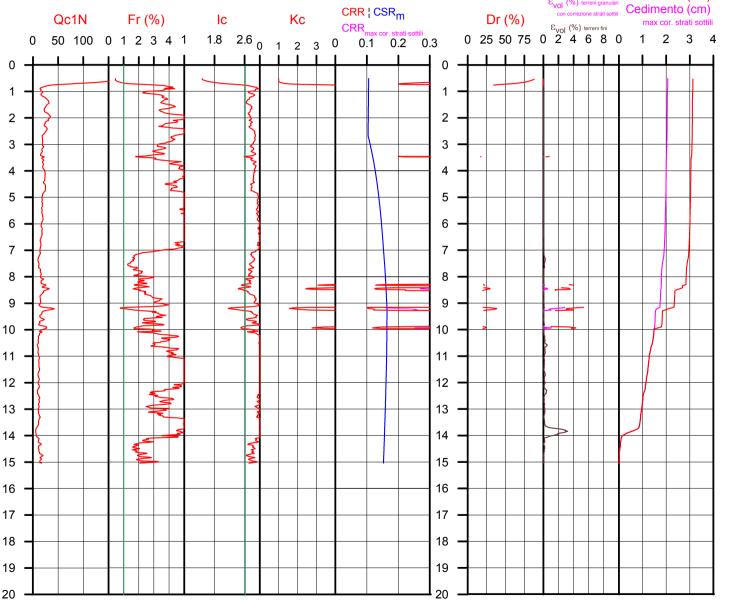
2.6 metri

Falda

44.3511° longitudine 11.9165° tipo di suolo fattore amplificazione amplificazione topografica amax al p.c. (m/sec2) 2.753 nagnitude 5.500

**DECRETO MINISTRIALE 14-01-2008** 

| DELIBERA REGIONALE E.R. 2007 |  |  |  |
|------------------------------|--|--|--|
| amax substrato (m/sec2)      |  |  |  |
| 2.011                        |  |  |  |
| fattore amplificazione       |  |  |  |
| 1.500                        |  |  |  |
| amax al p.c. (m/sec2)        |  |  |  |
| 3.017                        |  |  |  |
| magnitude                    |  |  |  |
| 5.500                        |  |  |  |
|                              |  |  |  |


DELIBERA RECIONALE E D. 2007

Geologia Territoriale www.geo55.com

Società di S.G.T. sas di Van Zutphen Albert & C.

Via Matteotti 50 48012 Bagnacavallo (RA)





# **PROCEDURA**

#### **VERIFICA DI LIQUEFAZIONE SECONDO ROBERSTON & CABAL 2009**

- \* amax e fattore di amplificazione secondo DECRETO MINISTRIALE 14-01-2008
- \* CSR 5.5 secondo ldriss & Boulanger 2004 (Cyclic Stress Ratio corretto per magnitudine)
- \* CRR (Cyclic Resistance Ratio) calcolato con
- Qc1N secondo Idriss & Boulanger 2004
- Fattore Kc per la correzione di Qc1N to Qc1Ncs per granulometria calcolato da lc secondo Robertson & Cabal 2009
- Fattore Kh per la correzione di Qc1N<sub>cs</sub> per strati sottili di sabbia in mezzo argilla
- \* Fattore di sicurezza per liquefazione: Fslig = CRR 7.5 / CSR 5.5

# CALCOLO DEL CEDIMENTO E DELL' INDICE DI SPOSTAMENTO LATERALE PER TERRENI GRANULARI (ISHIHARA & YOSEMINE 1993)

Parametri utilizzati:

- \* Densità Relativa Dr secondo Tutsaoki 1990
- Fattore di sicurezza per liquefazione come sopra

| Cedimento ed indice di spostamento      | Cedimento         | Indice di    |
|-----------------------------------------|-------------------|--------------|
| laterale calcolato tra piano campagna e | terreni granulari | spostamento  |
| massima profondità della prova          |                   | laterale LDI |
| per terreni granulari                   | (cm)              | (cm)         |
| Cedimento totale                        | 1                 | 2            |
|                                         |                   |              |

#### CALCOLO DEL CEDIMENTO PER TERRENI FINI (ROBERTSON 2009)

Parametri utilizzati:

- Qc1N secondo Idriss & Boulanger 2004
- \* Fattore di sicurezza per liquefazione come sopra

| Cedimento                               | Cedimento    | Cedimento        |
|-----------------------------------------|--------------|------------------|
| laterale calcolato tra piano campagna e | terreni fini | totale           |
| massima profondità della prova          |              | fini + granulari |
|                                         |              |                  |
| per terreni fini                        | (cm)         | (cm)             |
| per terreni fini Cedimento totale       | (cm)<br>2    | (cm)<br>3        |

#### VALUTAZIONE DELL' INDICE I, DEL POTENZIALE DI LIQUEFAZIONE (IWASAKI 1982) (Riferimento Linee Guida AGI 2005; pagina 105)

Metodo di valutazione degli effetti di liquefazione basato su Fsliq e la profondità, Parametri utilizzati:

\* Fattore di sicurezza per liquefazione come sopra

Profondità

| INDICE I <sub>L</sub> DEL POTENZIALE DI LIQUEFAZIONE<br>senza correzione per con correzione per |                |              | POTENZIALE DI<br>ROTTURA |
|-------------------------------------------------------------------------------------------------|----------------|--------------|--------------------------|
| strati sottili                                                                                  | strati sottili |              | HOTTOLIA                 |
| 0.4                                                                                             | 0.0            | IL <=5       | BASSO                    |
|                                                                                                 |                | 5 < IL <= 15 | ELEVATO                  |
|                                                                                                 |                | IL > 15      | ESTREMAMENTE<br>ELEVATO  |

17-feb-12

Data

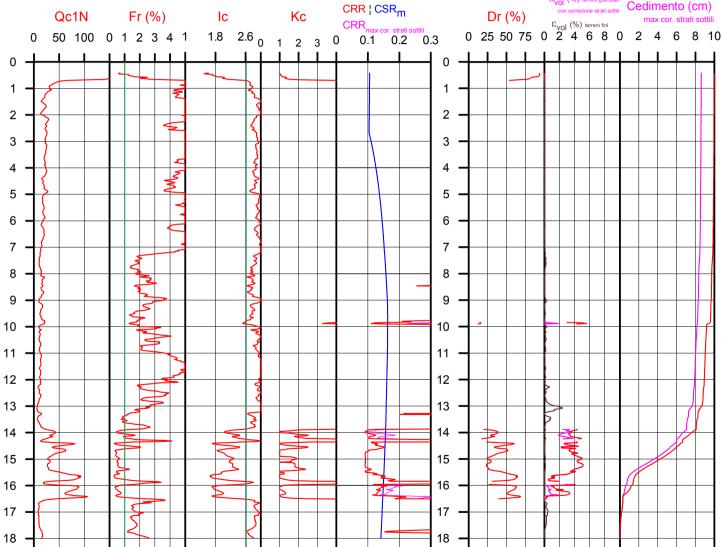
19

20

Falda

2.6 metri

**DECRETO MINISTRIALE 14-01-2008** 44.3511° longitudine 11.9165° tipo di suolo fattore amplificazione amplificazione topografica amax al p.c. (m/sec2) 2.753 nagnitude 5.500


| DELIBERA REGIONALE E.R. 2007 |                         |  |  |
|------------------------------|-------------------------|--|--|
| comune                       | amax substrato (m/sec2) |  |  |
| Faenza                       | 2.011                   |  |  |
|                              | fattore amplificazione  |  |  |
|                              | 1.500                   |  |  |
| amplificazione topografica   | amax al p.c. (m/sec2)   |  |  |
| 1.000                        | 3.017                   |  |  |
|                              | magnitude               |  |  |
|                              | 5.500                   |  |  |



Società di S.G.T. sas di Van Zutphen Albert & C.

Via Matteotti 50 48012 Bagnacavallo (RA)





19

20

# **PROCEDURA**

#### **VERIFICA DI LIQUEFAZIONE SECONDO ROBERSTON & CABAL 2009**

- \* amax e fattore di amplificazione secondo DECRETO MINISTRIALE 14-01-2008
- \* CSR 5.5 secondo ldriss & Boulanger 2004 (Cyclic Stress Ratio corretto per magnitudine)
- \* CRR (Cyclic Resistance Ratio) calcolato con
- Qc1N secondo Idriss & Boulanger 2004
- Fattore Kc per la correzione di Qc1N to Qc1Ncs per granulometria calcolato da lc secondo Robertson & Cabal 2009
- Fattore Kh per la correzione di Qc1N<sub>cs</sub> per strati sottili di sabbia in mezzo argilla
- \* Fattore di sicurezza per liquefazione: Fslig = CRR 7.5 / CSR 5.5

# CALCOLO DEL CEDIMENTO E DELL' INDICE DI SPOSTAMENTO LATERALE PER TERRENI GRANULARI (ISHIHARA & YOSEMINE 1993)

Parametri utilizzati:

- Densità Relativa Dr secondo Tutsaoki 1990
- Fattore di sicurezza per liquefazione come sonra

| r attoro ar oroarozza por inquolaziono como c | - I               |              |
|-----------------------------------------------|-------------------|--------------|
| Cedimento ed indice di spostamento            | Cedimento         | Indice di    |
| laterale calcolato tra piano campagna e       | terreni granulari | spostamento  |
| massima profondità della prova                |                   | laterale LDI |
| per terreni granulari                         | (cm)              | (cm)         |
| Cedimento totale                              | 8                 | 81           |
| Cedimento totale considerando strati sottili  | 7                 | 50           |

#### CALCOLO DEL CEDIMENTO PER TERRENI FINI (ROBERTSON 2009)

Parametri utilizzati:

- Qc1N secondo Idriss & Boulanger 2004
- Fattore di sicurezza per liquefazione come sopra

| t annote an enterior per inquestion of the enterior |              |                  |  |
|-----------------------------------------------------|--------------|------------------|--|
| Cedimento                                           | Cedimento    | Cedimento        |  |
| laterale calcolato tra piano campagna e             | terreni fini | totale           |  |
| massima profondità della prova                      |              | fini + granulari |  |
| per terreni fini                                    | (cm)         | (cm)             |  |
| Cedimento totale                                    | 2            | 10               |  |
| Cedimento totale considerando strati sottili        | 2            | 9                |  |

#### VALUTAZIONE DELL' INDICE I, DEL POTENZIALE DI LIQUEFAZIONE (IWASAKI 1982) (Riferimento Linee Guida AGI 2005; pagina 105)

Metodo di valutazione degli effetti di liquefazione basato su Fsliq e la profondità, Parametri utilizzati:

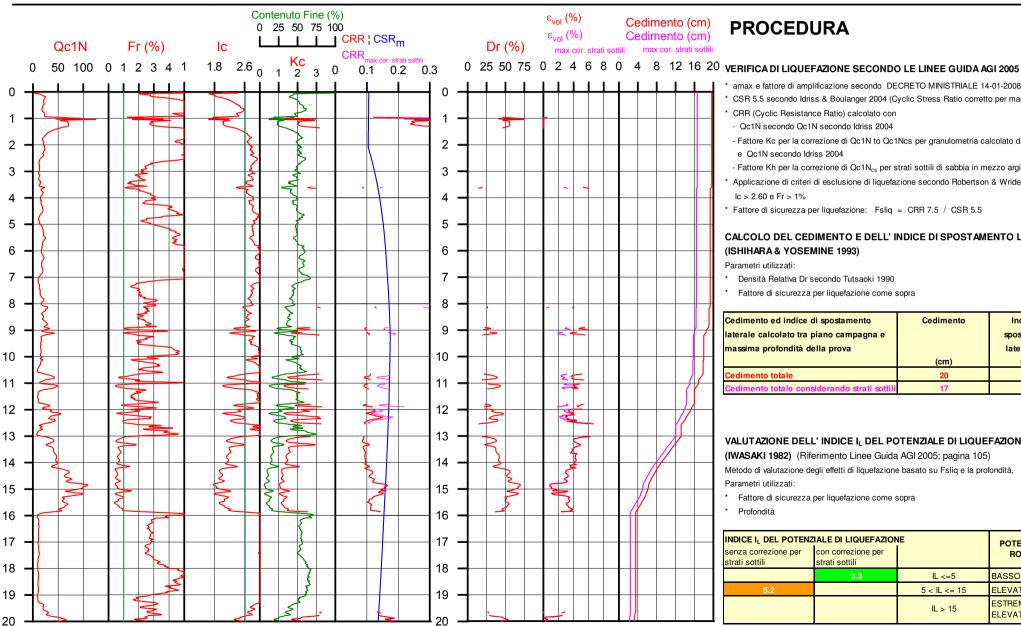
- \* Fattore di sicurezza per liquefazione come sopra
- \* Profondità

| INDICE I <sub>L</sub> DEL POTENZIALE DI LIQUEFAZIONE senza correzione per con correzione per strati sottili strati sottili |     |              | POTENZIALE DI<br>ROTTURA |
|----------------------------------------------------------------------------------------------------------------------------|-----|--------------|--------------------------|
| 1.5                                                                                                                        | 1.2 | IL <=5       | BASSO                    |
|                                                                                                                            |     | 5 < IL <= 15 | ELEVATO                  |
|                                                                                                                            |     | IL > 15      | ESTREMAMENTE<br>ELEVATO  |

Data

24/01/2012

**CPT** 


Falda 2.1 metri

| DECRETO MINISTRI                            | ALE 14-01-2008                   | DELIBERA REGIO                   | NALE E.R. 2007       |
|---------------------------------------------|----------------------------------|----------------------------------|----------------------|
| latitudine 44.3511°<br>longitudine 11.9165° | amax substrato (m/sec2)<br>1.948 | comune Faenza                    | amax substrato (n    |
| tipo di suolo                               | fattore amplificazione<br>1.414  |                                  | fattore amplificazio |
| amplificazione topografica 1.000            | amax al p.c. (m/sec2)<br>2.753   | amplificazione topografica 1.000 | amax al p.c. (m/se   |
|                                             | magnitude 5.500                  |                                  | magnitude            |

| DELIBERA REGIONALE E.R. 2007 |                         |  |  |
|------------------------------|-------------------------|--|--|
| comune                       | amax substrato (m/sec2) |  |  |
| Faenza                       | 2.011                   |  |  |
|                              | fattore amplificazione  |  |  |
|                              | 1.500                   |  |  |
| implificazione topografica   | amax al p.c. (m/sec2)   |  |  |
| 1.000                        | 3.017                   |  |  |
|                              | magnitude               |  |  |
|                              | 5.500                   |  |  |



Via Matteotti 50 48012 Bagnacavallo (RA)



# **PROCEDURA**

- amax e fattore di amplificazione secondo DECRETO MINISTRIALE 14-01-2008
- CSR 5.5 secondo Idriss & Boulanger 2004 (Cyclic Stress Ratio corretto per magnitudine)
- CRR (Cyclic Resistance Ratio) calcolato con
- Qc1N secondo Qc1N secondo Idriss 2004
- Fattore Kc per la correzione di Qc1N to Qc1Ncs per granulometria calcolato da lc e Qc1N secondo Idriss 2004
- Fattore Kh per la correzione di Qc1N<sub>cs</sub> per strati sottili di sabbia in mezzo argilla
- Applicazione di criteri di esclusione di liquefazione secondo Robertson & Wride 1998: lc > 2.60 e Fr > 1%
- \* Fattore di sicurezza per liquefazione: Fslig = CRR 7.5 / CSR 5.5

# CALCOLO DEL CEDIMENTO E DELL' INDICE DI SPOSTAMENTO LATERALE (ISHIHARA & YOSEMINE 1993)

Parametri utilizzati:

- Densità Relativa Dr secondo Tutsaoki 1990
- Fattore di sicurezza per liquefazione come sopra

| Cedimento ed indice di spostamento           | Cedimento | Indice di    |
|----------------------------------------------|-----------|--------------|
| laterale calcolato tra piano campagna e      |           | spostamento  |
| massima profondità della prova               |           | laterale LDI |
|                                              | (cm)      | (cm)         |
| Cedimento totale                             | 20        | 228          |
| Cedimento totale considerando strati sottili | 17        | 216          |

# VALUTAZIONE DELL' INDICE I, DEL POTENZIALE DI LIQUEFAZIONE

(IWASAKI 1982) (Riferimento Linee Guida AGI 2005; pagina 105)

Metodo di valutazione degli effetti di liquefazione basato su Fsliq e la profondità,

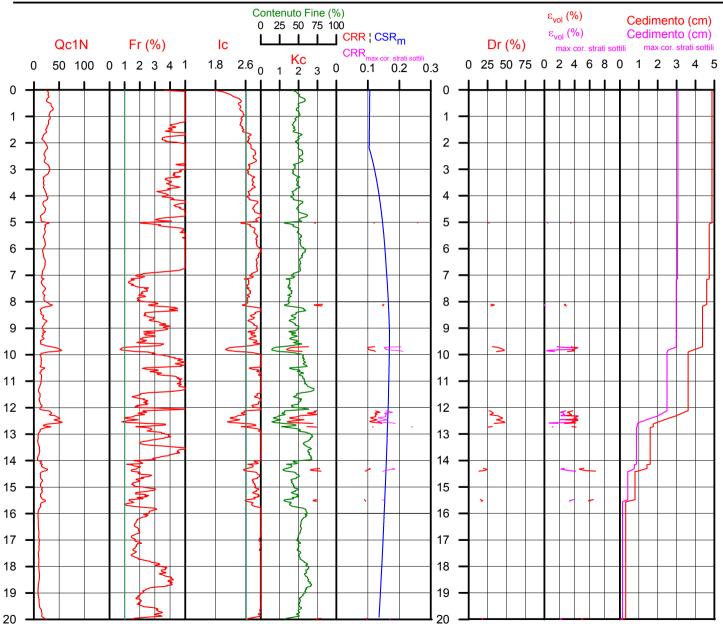
- Fattore di sicurezza per liquefazione come sopra
- Profondità

| INDICE I <sub>L</sub> DEL POTENZIALE DI LIQUEFAZIONE senza correzione per strati sottili con correzione per strati sottili |     |              | POTENZIALE DI<br>ROTTURA |
|----------------------------------------------------------------------------------------------------------------------------|-----|--------------|--------------------------|
|                                                                                                                            | 3.3 | IL <=5       | BASSO                    |
| 5.2                                                                                                                        |     | 5 < IL <= 15 | ELEVATO                  |
|                                                                                                                            |     | IL > 15      | ESTREMAMENTE<br>ELEVATO  |

Data

24-gen-12

**CPT** 2


Falda 2.2 metri

| DECRETO MINISTRI           | ALE 14-01-2008          |   | DELIBERA REGIO             | NALE E.R. 2007       |
|----------------------------|-------------------------|---|----------------------------|----------------------|
| latitudine 44.3511°        | amax substrato (m/sec2) | I | comune                     | amax substrato (n    |
| longitudine 11.9165°       | 1.948                   | ı | Faenza                     |                      |
| tipo di suolo              | fattore amplificazione  | I |                            | fattore amplificazio |
| С                          | 1.414                   | ı |                            |                      |
| amplificazione topografica | amax al p.c. (m/sec2)   | I | amplificazione topografica | amax al p.c. (m/se   |
| 1.000                      | 2.753                   | ı | 1.000                      |                      |
|                            | magnitude               | ſ |                            | magnitude            |
|                            | 5.500                   | ı |                            |                      |

| PELIBERAREGIO             | NALE E.N. 2007          |
|---------------------------|-------------------------|
| omune                     | amax substrato (m/sec2) |
| Faenza                    | 2.011                   |
|                           | fattore amplificazione  |
|                           | 1.500                   |
| mplificazione topografica | amax al p.c. (m/sec2)   |
| 1.000                     | 3.017                   |
|                           | magnitude               |
|                           | 5.500                   |



Via Matteotti 50 48012 Bagnacavallo (RA)



# **PROCEDURA**

#### VERIFICA DI LIQUEFAZIONE SECONDO LE LINEE GUIDA AGI 2005

- amax e fattore di amplificazione secondo DECRETO MINISTRIALE 14-01-2008
- CSR 5.5 secondo Idriss & Boulanger 2004 (Cyclic Stress Ratio corretto per magnitudine)
- CRR (Cyclic Resistance Ratio) calcolato con
- Qc1N secondo Qc1N secondo Idriss 2004
- Fattore Kc per la correzione di Qc1N to Qc1Ncs per granulometria calcolato da lc e Qc1N secondo Idriss 2004
- Fattore Kh per la correzione di Qc1N<sub>cs</sub> per strati sottili di sabbia in mezzo argilla
- Applicazione di criteri di esclusione di liquefazione secondo Robertson & Wride 1998: lc > 2.60 e Fr > 1%
- \* Fattore di sicurezza per liquefazione: Fslig = CRR 7.5 / CSR 5.5

# CALCOLO DEL CEDIMENTO E DELL' INDICE DI SPOSTAMENTO LATERALE (ISHIHARA & YOSEMINE 1993)

Parametri utilizzati:

- Densità Relativa Dr secondo Tutsaoki 1990
- Fattore di sicurezza per liquefazione come sopra

| Cedimento ed indice di spostamento      | Cedimento | Indice di    |
|-----------------------------------------|-----------|--------------|
| laterale calcolato tra piano campagna e |           | spostamento  |
| massima profondità della prova          |           | laterale LDI |
|                                         | (cm)      | (cm)         |
| On dissert and a total o                | 5         | 44           |
| Cedimento totale                        | 3         | 77           |

# VALUTAZIONE DELL' INDICE I, DEL POTENZIALE DI LIQUEFAZIONE

(IWASAKI 1982) (Riferimento Linee Guida AGI 2005; pagina 105)

Metodo di valutazione degli effetti di liquefazione basato su Fsliq e la profondità,

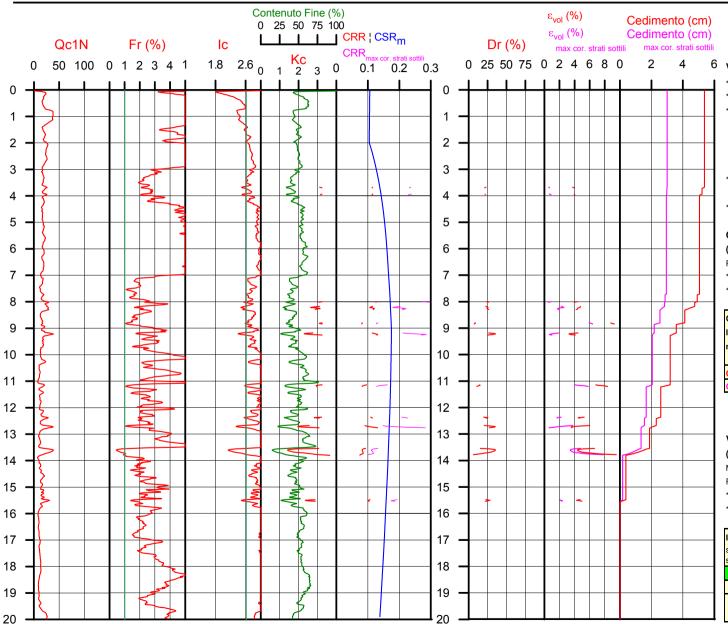
- Fattore di sicurezza per liquefazione come sopra
- Profondità

| INDICE I <sub>L</sub> DEL POTENZIALE DI LIQUEFAZIONE senza correzione per con correzione per strati sottili strati sottili |     |              | POTENZIALE DI<br>ROTTURA |
|----------------------------------------------------------------------------------------------------------------------------|-----|--------------|--------------------------|
| 1.3                                                                                                                        | 0.2 | IL <=5       | BASSO                    |
|                                                                                                                            |     | 5 < IL <= 15 | ELEVATO                  |
|                                                                                                                            |     | IL > 15      | ESTREMAMENTE<br>ELEVATO  |

Data

24-gen-12

3 **CPT** 


Falda 2 metri

| DECRETO MINISTRI           | ALE 14-01-2008          | DI |
|----------------------------|-------------------------|----|
| latitudine 44.3511°        | amax substrato (m/sec2) | СО |
| longitudine 11.9165°       | 1.948                   |    |
| tipo di suolo              | fattore amplificazione  |    |
| С                          | 1.414                   |    |
| amplificazione topografica | amax al p.c. (m/sec2)   | am |
| 1.000                      | 2.753                   |    |
|                            | magnitude               |    |
|                            | 5.500                   |    |

| ELIBERAREGIO              | NALE E.N. 2007          |
|---------------------------|-------------------------|
| omune                     | amax substrato (m/sec2) |
| Faenza                    | 2.011                   |
|                           | fattore amplificazione  |
|                           | 1.500                   |
| mplificazione topografica | amax al p.c. (m/sec2)   |
| 1.000                     | 3.017                   |
|                           | magnitude               |
|                           | 5.500                   |



Via Matteotti 50 48012 Bagnacavallo (RA)



# **PROCEDURA**

#### VERIFICA DI LIQUEFAZIONE SECONDO LE LINEE GUIDA AGI 2005

- amax e fattore di amplificazione secondo DECRETO MINISTRIALE 14-01-2008
- CSR 5.5 secondo Idriss & Boulanger 2004 (Cyclic Stress Ratio corretto per magnitudine)
- CRR (Cyclic Resistance Ratio) calcolato con
- Qc1N secondo Qc1N secondo Idriss 2004
- Fattore Kc per la correzione di Qc1N to Qc1Ncs per granulometria calcolato da lc e Qc1N secondo Idriss 2004
- Fattore Kh per la correzione di Qc1N<sub>cs</sub> per strati sottili di sabbia in mezzo argilla
- Applicazione di criteri di esclusione di liquefazione secondo Robertson & Wride 1998: lc > 2.60 e Fr > 1%
- \* Fattore di sicurezza per liquefazione: Fslig = CRR 7.5 / CSR 5.5

# CALCOLO DEL CEDIMENTO E DELL' INDICE DI SPOSTAMENTO LATERALE (ISHIHARA & YOSEMINE 1993)

Parametri utilizzati:

- Densità Relativa Dr secondo Tutsaoki 1990
- Fattore di sicurezza per liquefazione come sopra

| Cedimento ed indice di spostamento           | Cedimento | Indice di    |
|----------------------------------------------|-----------|--------------|
| laterale calcolato tra piano campagna e      |           | spostamento  |
| massima profondità della prova               |           | laterale LDI |
|                                              | (cm)      | (cm)         |
| Cedimento totale                             | 5         | 6            |
| Cedimento totale considerando strati sottili | 2         | 2            |

# VALUTAZIONE DELL' INDICE I, DEL POTENZIALE DI LIQUEFAZIONE

(IWASAKI 1982) (Riferimento Linee Guida AGI 2005; pagina 105)

Metodo di valutazione degli effetti di liquefazione basato su Fsliq e la profondità,

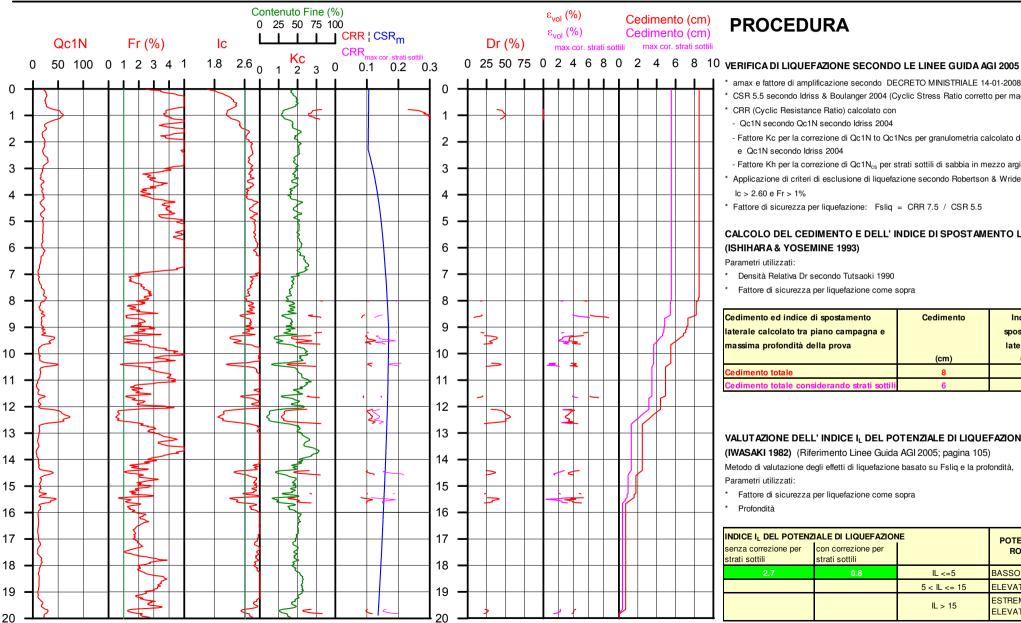
- Fattore di sicurezza per liquefazione come sopra
- Profondità

| INDICE I <sub>L</sub> DEL POTENZIALE DI LIQUEFAZIONE |                                      |              | POTENZIALE DI           |
|------------------------------------------------------|--------------------------------------|--------------|-------------------------|
| senza correzione per<br>strati sottili               | con correzione per<br>strati sottili |              | ROTTURA                 |
| 1.7                                                  | 0.4                                  | IL <=5       | BASSO                   |
|                                                      |                                      | 5 < IL <= 15 | ELEVATO                 |
|                                                      |                                      | IL > 15      | ESTREMAMENTE<br>ELEVATO |

Data

24/01/2012

**CPT** 4


Falda 2.3 metri

| DECRETO MINISTRI           | ALE 14-01-2008          | DELIBERA REGIO             | NALE E.R. 2007       |
|----------------------------|-------------------------|----------------------------|----------------------|
| latitudine 44.3511°        | amax substrato (m/sec2) | comune                     | amax substrato (n    |
| longitudine 11.9165°       | 1.948                   | Faenza                     |                      |
| tipo di suolo              | fattore amplificazione  |                            | fattore amplificazio |
| С                          | 1.414                   |                            |                      |
| amplificazione topografica | amax al p.c. (m/sec2)   | amplificazione topografica | amax al p.c. (m/se   |
| 1.000                      | 2.753                   | 1.000                      |                      |
|                            | magnitude               |                            | magnitude            |
|                            | 5.500                   |                            |                      |

| DELIDERATIE GIOTALE E.H. 2007 |                         |  |  |
|-------------------------------|-------------------------|--|--|
| comune                        | amax substrato (m/sec2) |  |  |
| Faenza                        | 2.011                   |  |  |
|                               | fattore amplificazione  |  |  |
|                               | 1.500                   |  |  |
| amplificazione topografica    | amax al p.c. (m/sec2)   |  |  |
| 1.000                         | 3.017                   |  |  |
|                               | magnitude               |  |  |
|                               | 5.500                   |  |  |
| •                             |                         |  |  |



Via Matteotti 50 48012 Bagnacavallo (RA)



# **PROCEDURA**

- amax e fattore di amplificazione secondo DECRETO MINISTRIALE 14-01-2008
- CSR 5.5 secondo Idriss & Boulanger 2004 (Cyclic Stress Ratio corretto per magnitudine)
- CRR (Cyclic Resistance Ratio) calcolato con
- Qc1N secondo Qc1N secondo Idriss 2004
- Fattore Kc per la correzione di Qc1N to Qc1Ncs per granulometria calcolato da lc e Qc1N secondo Idriss 2004
- Fattore Kh per la correzione di Qc1N<sub>cs</sub> per strati sottili di sabbia in mezzo argilla
- Applicazione di criteri di esclusione di liquefazione secondo Robertson & Wride 1998: lc > 2.60 e Fr > 1%
- \* Fattore di sicurezza per liquefazione: Fslig = CRR 7.5 / CSR 5.5

# CALCOLO DEL CEDIMENTO E DELL' INDICE DI SPOSTAMENTO LATERALE (ISHIHARA & YOSEMINE 1993)

Parametri utilizzati:

- Densità Relativa Dr secondo Tutsaoki 1990
- Fattore di sicurezza per liquefazione come sopra

| Cedimento ed indice di spostamento           | Cedimento | Indice di    |
|----------------------------------------------|-----------|--------------|
| laterale calcolato tra piano campagna e      |           | spostamento  |
| massima profondità della prova               |           | laterale LDI |
|                                              | (cm)      | (cm)         |
| Cedimento totale                             | 8         | 66           |
| Cedimento totale considerando strati sottili | 6         | 41           |

# VALUTAZIONE DELL' INDICE I, DEL POTENZIALE DI LIQUEFAZIONE

(IWASAKI 1982) (Riferimento Linee Guida AGI 2005; pagina 105)

Metodo di valutazione degli effetti di liquefazione basato su Fsliq e la profondità,

- Fattore di sicurezza per liquefazione come sopra
- Profondità

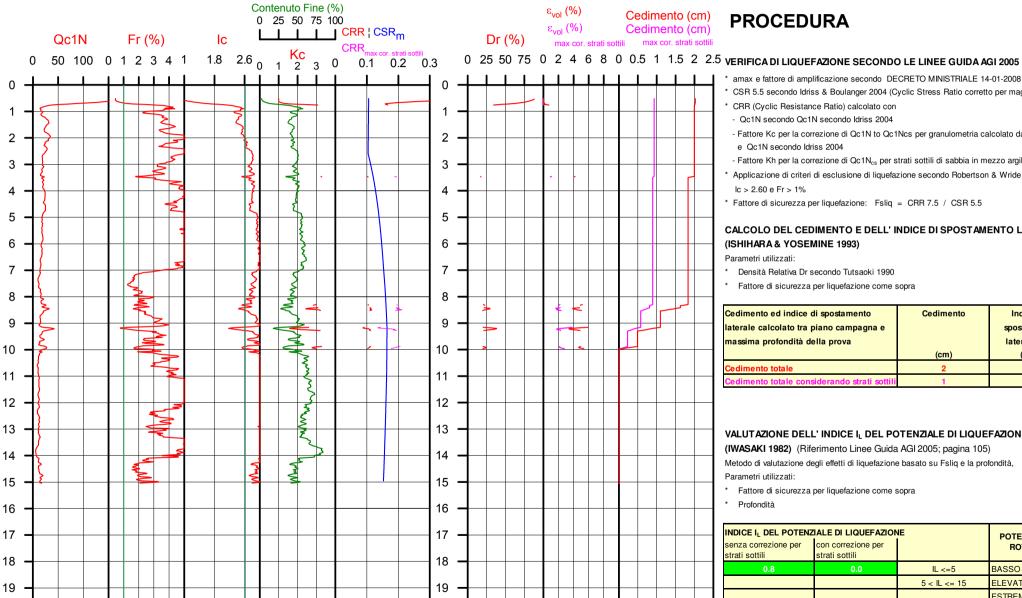
| INDICE I <sub>L</sub> DEL POTENZIALE DI LIQUEFAZIONE<br>senza correzione per con correzione per |                |              | POTENZIALE DI           |
|-------------------------------------------------------------------------------------------------|----------------|--------------|-------------------------|
| strati sottili                                                                                  | strati sottili |              | ROTTURA                 |
| 2.7                                                                                             | 0.8            | IL <=5       | BASSO                   |
|                                                                                                 |                | 5 < IL <= 15 | ELEVATO                 |
|                                                                                                 |                | IL > 15      | ESTREMAMENTE<br>ELEVATO |

Data

20

17-feb-12

**CPT** 5


Falda 2.6 metri

| DECRETO MINISTRI           | ALE 14-01-2008          | DELIBERA REGIONALE E.R. 2007 |                      |  |  |  |
|----------------------------|-------------------------|------------------------------|----------------------|--|--|--|
|                            | amax substrato (m/sec2) |                              | amax substrato (m    |  |  |  |
| longitudine 11.9165°       | 1.948                   | Faenza                       |                      |  |  |  |
| tipo di suolo              | fattore amplificazione  |                              | fattore amplificazio |  |  |  |
| С                          | 1.414                   |                              |                      |  |  |  |
| amplificazione topografica | amax al p.c. (m/sec2)   | amplificazione topografica   | amax al p.c. (m/se   |  |  |  |
| 1.000                      | 2.753                   | 1.000                        |                      |  |  |  |
|                            | magnitude               |                              | magnitude            |  |  |  |
|                            | 5.500                   |                              |                      |  |  |  |

| DELIBERA REGIONALE E.R. 2007 |                         |  |  |  |  |  |
|------------------------------|-------------------------|--|--|--|--|--|
| comune                       | amax substrato (m/sec2) |  |  |  |  |  |
| Faenza                       | 2.011                   |  |  |  |  |  |
|                              | fattore amplificazione  |  |  |  |  |  |
|                              | 1.500                   |  |  |  |  |  |
| implificazione topografica   | amax al p.c. (m/sec2)   |  |  |  |  |  |
| 1.000                        | 3.017                   |  |  |  |  |  |
|                              | magnitude               |  |  |  |  |  |
|                              | 5.500                   |  |  |  |  |  |
|                              |                         |  |  |  |  |  |



Via Matteotti 50 48012 Bagnacavallo (RA)



20

# **PROCEDURA**

- - CSR 5.5 secondo Idriss & Boulanger 2004 (Cyclic Stress Ratio corretto per magnitudine)
  - CRR (Cyclic Resistance Ratio) calcolato con
  - Qc1N secondo Qc1N secondo Idriss 2004
  - Fattore Kc per la correzione di Qc1N to Qc1Ncs per granulometria calcolato da lc e Qc1N secondo Idriss 2004
  - Fattore Kh per la correzione di Qc1N<sub>cs</sub> per strati sottili di sabbia in mezzo argilla
  - Applicazione di criteri di esclusione di liquefazione secondo Robertson & Wride 1998: lc > 2.60 e Fr > 1%
  - \* Fattore di sicurezza per liquefazione: Fslig = CRR 7.5 / CSR 5.5

# CALCOLO DEL CEDIMENTO E DELL' INDICE DI SPOSTAMENTO LATERALE (ISHIHARA & YOSEMINE 1993)

Parametri utilizzati:

- Densità Relativa Dr secondo Tutsaoki 1990
- Fattore di sicurezza per liquefazione come sopra

| Cedimento ed indice di spostamento      | Cedimento | Indice di    |
|-----------------------------------------|-----------|--------------|
| laterale calcolato tra piano campagna e |           | spostamento  |
| massima profondità della prova          |           | laterale LDI |
|                                         | (cm)      | (cm)         |
|                                         | (CIII)    | (CIII)       |
| Cedimento totale                        | 2         | 3            |

# VALUTAZIONE DELL' INDICE I, DEL POTENZIALE DI LIQUEFAZIONE

(IWASAKI 1982) (Riferimento Linee Guida AGI 2005; pagina 105)

Metodo di valutazione degli effetti di liquefazione basato su Fsliq e la profondità,

- Fattore di sicurezza per liquefazione come sopra
- Profondità

| INDICE I <sub>L</sub> DEL POTENZ<br>senza correzione per<br>strati sottili | POTENZIALE DI<br>ROTTURA |              |                         |
|----------------------------------------------------------------------------|--------------------------|--------------|-------------------------|
| 0.8                                                                        | 0.0                      | IL <=5       | BASSO                   |
|                                                                            |                          | 5 < IL <= 15 | ELEVATO                 |
|                                                                            |                          | IL > 15      | ESTREMAMENTE<br>ELEVATO |

Data

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

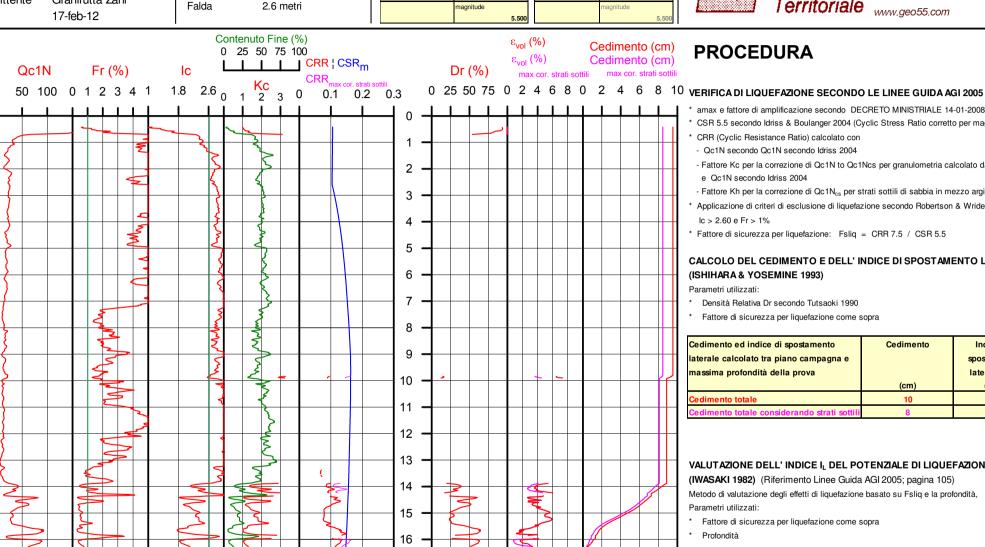
18

19

20

**CPT** 6

2.6 metri


| DECRETO MINISTRI                            | ALE 14-01-2008                   | DELIBERA REGIONALE E.R. 2007 |                                  |                      |  |  |
|---------------------------------------------|----------------------------------|------------------------------|----------------------------------|----------------------|--|--|
| latitudine 44.3511°<br>longitudine 11.9165° | amax substrato (m/sec2)<br>1.948 |                              | comune<br>Faenza                 | amax substrato (m    |  |  |
| tipo di suolo                               | fattore amplificazione 1.414     |                              |                                  | fattore amplificazio |  |  |
| amplificazione topografica 1.000            | amax al p.c. (m/sec2)<br>2.753   |                              | amplificazione topografica 1.000 | amax al p.c. (m/se   |  |  |
|                                             | magnitude                        |                              |                                  | magnitude            |  |  |

| SGT | Società    |
|-----|------------|
|     | Geologia   |
|     | Territoria |

S.G.T. sas di Van Zutphen Albert & C.

Via Matteotti 50 48012 Bagnacavallo (RA)

www.geo55.com



17

18

19

20

# **PROCEDURA**

max al p.c. (m/sec2)

- amax e fattore di amplificazione secondo DECRETO MINISTRIALE 14-01-2008
- CSR 5.5 secondo Idriss & Boulanger 2004 (Cyclic Stress Ratio corretto per magnitudine)
- CRR (Cyclic Resistance Ratio) calcolato con
- Qc1N secondo Qc1N secondo Idriss 2004
- Fattore Kc per la correzione di Qc1N to Qc1Ncs per granulometria calcolato da lc e Qc1N secondo Idriss 2004
- Fattore Kh per la correzione di Qc1N<sub>cs</sub> per strati sottili di sabbia in mezzo argilla
- Applicazione di criteri di esclusione di liquefazione secondo Robertson & Wride 1998: lc > 2.60 e Fr > 1%
- \* Fattore di sicurezza per liquefazione: Fslig = CRR 7.5 / CSR 5.5

# CALCOLO DEL CEDIMENTO E DELL' INDICE DI SPOSTAMENTO LATERALE (ISHIHARA & YOSEMINE 1993)

Parametri utilizzati:

- Densità Relativa Dr secondo Tutsaoki 1990
- Fattore di sicurezza per liquefazione come sopra

| Cedimento ed indice di spostamento           | Cedimento | Indice di    |
|----------------------------------------------|-----------|--------------|
| laterale calcolato tra piano campagna e      |           | spostamento  |
| massima profondità della prova               |           | laterale LDI |
|                                              | (cm)      | (cm)         |
| Cedimento totale                             | 10        | 90           |
| Cedimento totale considerando strati sottili |           |              |

# VALUTAZIONE DELL' INDICE I, DEL POTENZIALE DI LIQUEFAZIONE

(IWASAKI 1982) (Riferimento Linee Guida AGI 2005; pagina 105)

Metodo di valutazione degli effetti di liquefazione basato su Fsliq e la profondità,

- Fattore di sicurezza per liquefazione come sopra
- Profondità

| INDICE I <sub>L</sub> DEL POTENZ<br>senza correzione per<br>strati sottili | POTENZIALE DI<br>ROTTURA |              |                         |
|----------------------------------------------------------------------------|--------------------------|--------------|-------------------------|
| 2.5                                                                        | 1.6                      | IL <=5       | BASSO                   |
|                                                                            |                          | 5 < IL <= 15 | ELEVATO                 |
|                                                                            |                          | IL > 15      | ESTREMAMENTE<br>ELEVATO |

|        | COCEO                                                                                                                                                                                                                                       |                      | COMMITTENT                                     | E: Granfrutta ZANI          | SOND.N°: S.1                  | PROF.(m): 32.00                       |  |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|-----------------------------|-------------------------------|---------------------------------------|--|--|
|        | SOGEO® S.R.L. INDAGINI GEOGNOSTICHE ED AMBIENTALI VIa Edison 1/1 - 48022 LUGO (RA) Tel. 054522042 - Fax 054534443 - E-mail: sogeo@sogeo-srl.com Concessione Ministero Infrastrutture e Trasporti - Settore C Decr. n. 005754 del 05/07/2010 |                      | CANTIERE: Gra                                  | anarolo Faentino (RA)       | QUOTA (m): p.d.c.             |                                       |  |  |
|        |                                                                                                                                                                                                                                             |                      | PERFORATRIC                                    | CE: CMV MK900 D1            | LATITUDINE (°): N 44,235014°  |                                       |  |  |
|        |                                                                                                                                                                                                                                             |                      | METODO PERI                                    | FORAZ.: Carotaggio continuo | LONGITUDINE (°): E 11,91461°  |                                       |  |  |
| RIVES  | TIMENTO: Ø 127 mm                                                                                                                                                                                                                           | ı                    | ATTREZZO PERFORAZ.: Carotiere semplice Ø101 mm |                             |                               | DATA INIZ-FINE: 29/11/2011-29/11/2011 |  |  |
| PIEZO  | METRO:                                                                                                                                                                                                                                      |                      |                                                |                             |                               | SCALA: 1:100                          |  |  |
| RIF.PR | REV.N°: 277-11                                                                                                                                                                                                                              | CERTIFICATO N°: C11- | 141-1                                          | RAPPORTO N°:                | DATA DI EMISSIONE: 05/12/2011 | PAGINA N°: 1 di 2                     |  |  |

| 1                    |                                  | Vane Test [daN/cm²]              | Profondita' [m]                     | Stratigrafia | Descrizione                                                                                                                                                                                                                                                                                 | Campioni                       | Campioni Rim. | S.P.T. [n. colpi] P.A         | Falda | Pz.Norton | Pz Casagrande | Tubo Down Hole |
|----------------------|----------------------------------|----------------------------------|-------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------|-------------------------------|-------|-----------|---------------|----------------|
| 3                    | >6.0-<br>2.6 -<br>2.0 -          | - 1.20 -<br>- 1.00 -             | - 1.10 -<br>- 1.60 -<br>- 2.60 -    |              | Limo argilloso di colore marrone - grigio  Campione indisturbato  Limo con argilla di colore grigio con striature nere e giallastre, con calcinelli                                                                                                                                         | = 1.10 =<br>C.I. 1<br>= 1.60 = |               |                               | 2.70  |           |               |                |
| 4                    | 1.5 -<br>1.6 -                   | - 0.70 -<br>- 0.80 -             | - 3.90 -                            |              | Limo sabbioso di colore grigio - giallastro  Limo con argilla di colore grigio con striature giallastre, raramente nere. Presenti rari bioclasti                                                                                                                                            |                                |               |                               | -     |           |               |                |
| 6                    | 2.2 -                            | - 1.40 -<br>- 1.10 -             | - 5.50 -<br>- 6.10 -<br>- 7.00 -    |              | Campione indisturbato  Limo con argilla di colore grigio con striature giallastre, raramente nere. Presenti rari bioclasti. Da -6.40 m colore grigio scuro  Limo sabbioso di colore grigio - giallastro, con calcinelli                                                                     | - 5.50 =<br>C.I. 3<br>- 6.10 = |               |                               |       |           |               |                |
| 8<br>9<br>10         |                                  |                                  | - 7.50 -<br>- 10.10-                |              | Sabbia limosa di colore giallastro - grigio                                                                                                                                                                                                                                                 |                                |               | — 9.00 —<br>3/4/6<br>— 9.45 — |       |           |               |                |
| 11 12 -              | 2.0 -<br>1.9 -                   | - 1.00 -<br>- 0.90 -<br>- 0.80 - | - 12.00                             |              | Alternanza decimetrica con passaggi graduali di limo argilloso e sabbia limosa. Colore grigio - giallastro, con striature nere nel limo                                                                                                                                                     | ÷ <u>1</u> 2.00 ÷              |               |                               |       |           |               |                |
| 13                   | 2.0 <u>-</u><br>2.0 <u>-</u>     | - 1.00 -<br>- 1.00 -             | - 12.60 -<br>- 13.50 -<br>- 14.00 - |              | Campione indisturbato  Alternanza decimetrica con passaggi graduali di limo argilloso e sabbia limosa. Colore grigio - giallastro, con striature nere nel limo  Argilla limosa di colore grigio con qualche striature giallastra  Limo sabbioso di colore grigio con variegature giallastre | C.I. 3<br>12.60                |               |                               |       |           |               |                |
| 15                   | 1.8 -                            | - 0.90 -                         | - 15.00 -<br>- 16.00 -<br>- 16.50 - |              | Sabbia limosa di colore grigio  Argilla limosa di colore grigio con rare striature nere e giallastre e con alcuni calcinelli  Campione indisturbato                                                                                                                                         | 16.50 t<br>C.I. 4              |               |                               |       |           |               |                |
| 18.                  | 1.6 -<br>1.3 -<br>2.0 -<br>1.8 - | - 0.80 -<br>- 0.60 -<br>- 1.00 - | - 17.10-                            |              | Argilla limosa di colore grigio con rare striature nere e giallastre e con alcuni calcinelli                                                                                                                                                                                                | 17.10                          |               |                               |       |           |               |                |
| 20                   | 1.6                              | - 0.80 -                         | - 19.60 -<br>- 20.00 -              | 2            | Sabbia limosa di colore giallo Sabbia fine - media di colore giallo                                                                                                                                                                                                                         |                                |               |                               |       |           |               |                |
| 22                   | 1.7 -                            | - 0.80 -                         | 21.00                               |              | Argilla limosa di colore grigio con striature giallastre  Sabbia limosa di colore grigio - giallo                                                                                                                                                                                           |                                |               |                               |       |           |               |                |
| 24                   |                                  |                                  | - 22.90 -                           |              | Sabbia fine - media di colore giallo                                                                                                                                                                                                                                                        |                                |               |                               |       |           |               |                |
| 26<br>27<br>28<br>29 |                                  |                                  | - 29.50 -<br>30.00                  |              | Sabbia fine - media di colore grigio, con alcuni inclusi ricchi in sostanza organica  Ghiaia fine - media, arrotondata, in matrice sabbiosa - limosa di colore grigio                                                                                                                       |                                |               |                               |       |           |               |                |

Lo Sperimentatore

Il Direttore del Laboratorio

|         | COCEO                                                                                                                                           | <u></u> | COMMITTENTE: Granfrutta ZANI |                                                |                               | SOND.N°: S.1      | PROF.(m): 32.00                       |  |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------|------------------------------------------------|-------------------------------|-------------------|---------------------------------------|--|--|
|         | SOGEO® S.R.L. INDAGINI GEOGNOSTICHE ED AMBIENTALI Via Edison 1/1 - 48022 LUGO (RA) Tel. 054522042 - Fax 054534443 - E-mail: sogeo@sogeo-srl.com |         | CANTIERE: Gra                | anarolo Faentino (RA)                          | QUOTA (m): p.d.c.             |                   |                                       |  |  |
|         |                                                                                                                                                 |         | PERFORATRIC                  | CE: CMV MK900 D1                               | LATITUDINE (°): N 44,235014°  |                   |                                       |  |  |
|         | Concessione Ministero Infrastrutture e Trasporti - Settore C<br>Decr. n. 005754 del 05/07/2010                                                  |         |                              | FORAZ.: Carotaggio continuo                    | LONGITUDINE (°): E 11,91461°  |                   |                                       |  |  |
| RIVESTI | RIVESTIMENTO: Ø 127 mm                                                                                                                          |         |                              | ATTREZZO PERFORAZ.: Carotiere semplice Ø101 mm |                               |                   | DATA INIZ-FINE: 29/11/2011-29/11/2011 |  |  |
| PIEZOM  | IETRO:                                                                                                                                          |         |                              |                                                | SCALA: 1:100                  |                   |                                       |  |  |
| RIF.PRE | RIF.PREV.N°: 277-11 CERTIFICATO N°: C11-                                                                                                        |         |                              | RAPPORTO N°:                                   | DATA DI EMISSIONE: 05/12/2011 | PAGINA N°: 2 di 2 |                                       |  |  |

| Scala 1:100 | P.P. I [daN/cm²] | Vane Test [daN/cm²] | Profondita' [m] | Stratigrafia | Descrizione                                                                                                                            | Campioni | Campioni Rim. | S.P.T. [n. colpi] P.A. | Falda | Pz.Norton | Pz Casagrande | Tubo Down Hole |
|-------------|------------------|---------------------|-----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|------------------------|-------|-----------|---------------|----------------|
|             | - 2.1 -          | - 1.00 -            | 30.00           |              |                                                                                                                                        |          |               |                        |       |           |               |                |
| 31          |                  | - 0.90 -            | -               |              | Argilla limosa di colore grigio con striature giallastre e nere e con qualche livello milli-<br>metrico, talora centimetrico, sabbioso |          |               |                        |       |           |               |                |
| 32          | 2.3              | - 1.10 -            |                 |              | mouroe, talera comunication, cassiloco                                                                                                 |          |               |                        |       |           |               | 31.50          |
|             | - 2.2 -          | - 1.10 -            | - 32.00 -       |              |                                                                                                                                        |          |               |                        |       |           |               |                |
| 33          |                  |                     |                 |              |                                                                                                                                        |          |               |                        |       |           |               |                |
| 34          |                  |                     |                 |              |                                                                                                                                        |          |               |                        |       |           |               |                |
| 35          |                  |                     |                 |              |                                                                                                                                        |          |               |                        |       |           |               |                |
| 36          |                  |                     |                 |              |                                                                                                                                        |          |               |                        |       |           |               |                |
| 37          |                  |                     |                 |              |                                                                                                                                        |          |               |                        |       |           |               |                |
| 38          |                  |                     |                 |              |                                                                                                                                        |          |               |                        |       |           |               |                |
| 39          |                  |                     |                 |              |                                                                                                                                        |          |               |                        |       |           |               |                |
| 40          |                  |                     |                 |              |                                                                                                                                        |          |               |                        |       |           |               |                |

C.I. = campioni indisturbati

Lo Sperimentatore

Note:

Livello acqua rilevato a -2.70~m dal p.d.c. a fine sondaggio.

Installato tubo per down-hole in p.v.c.  $\emptyset$  3" a -31.50 m dal p.d.c.

Il Direttore del Laboratorio



**COMMITTENTE**: Granfrutta ZANI

**RIF. N°**: 277-11

LOCALITA': Granarolo Faentino (RA)

**ALLEGATO A:** C11-141-1

**SONDAGGIO N: S.1** 

**DATA:** 29/11/2011



Cassa 2 da -5.0 a -10.0 m



Cassa 4 da -15.0 a -20.0 m



Cassa 1 da 0.0 a -5.0 m



Cassa 3 da -10.0 a -15.0 m



**COMMITTENTE**: Granfrutta ZANI

**RIF. N°:** 277-11

LOCALITA': Granarolo Faentino (RA)

**ALLEGATO A:** C11-141-1

SONDAGGIO N: S.1

**DATA:** 29/11/2011



Cassa 6 da -25.0 a -30.0 m



Posizionamento



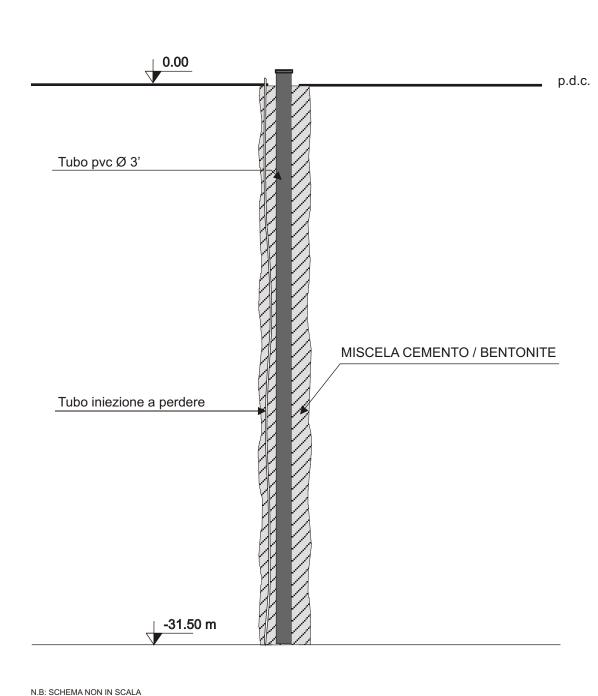
Cassa 5 da -20.0 a -25.0 m



Tubo per down-hole



Lo Sperimentatore


Note ed osservazioni:

# **SCHEMA INSTALLAZIONE STRUMENTI**

# Tubo per indagine geofisica "Down-Hole"

Il Direttore del Laboratorio

| COMMITTENTE: Granfrutta ZANI       |              | SONDAGGIO N° S.1               |
|------------------------------------|--------------|--------------------------------|
|                                    |              | 0011271001011 011              |
| CANTIERE: Granarolo Faentino (RA)  |              | RIF. PRFV. N: 277-11           |
|                                    |              |                                |
| LOCALITA': Granarolo Faentino (RA) |              | DATA DI ESECUZIONE: 29/11/2011 |
|                                    |              |                                |
| N° CERTIFICATO: C11-141-1          | N° RAPPORTO: | DATA DI FMISSIONE: 05/12/2011  |



C.G.A.



Studio Tecnico Associato Consulenze di Geologia e Ambiente del Dott. Geol. F. Barbieri e del Dott. Geol. M. Ropa
Via E. Fermi nº 11/A - 40017 SAN GIOVANNI IN PERSICETO (BO)
Tel. 051 - 687.11.13 Fax 051 - 687.43.28

# Comune di Faenza (RA)

Località: Granarolo

Committente: COOP. GRANFRUTTA ZANI

Esecuzione di n° 1 prova Down Hole a 31 m per la determinazione della V s30 per l'ampliamento dello stabilimento in località Granarolo nel Comune di Faenza (RA) - DH S1

| PROGETTO: | CODIFICA: | DATA            |
|-----------|-----------|-----------------|
| A 765     | GF 277    | 26 gennaio 2012 |

# I Geologi







del Dott. Geol. F. Barbieri e del Dott. Geol. M. Ropa

Via E. Fermi n° 11/A - 40017 SAN GIOVANNI IN PERSICETO (BO) Codice Fiscale e P. IVA 04112290376 Tel. 051 - 687.11.13 Fax 051 - 687.43.28 Web: http://www.cgastudio.eu E-mail: cgastudio@cgastudio.eu

E-mail: cgastudio@cgastudio.eu

# COOP. GRANFRUTTA ZANI

Esecuzione di nº 1 prova Down Hole a 31 m per la determinazione della  $V_{\rm S30}$  per l'ampliamento dello stabilimento in località Granarolo nel Comune di Faenza (RA) - DH S1.

| PROGETTO | CODIFICA | REV. | PAGINA         |
|----------|----------|------|----------------|
| A 765    | GF 277   | 0    | Pagina 1 di 10 |

L:\A 765 - GF 277 - DH GranFrutta Zani - Granarolo - Faenza (RA)\Relazione DH Granfrutta Zani.doc

# **SOMMARIO**

| SOMMARIO                                                                             | 1  |
|--------------------------------------------------------------------------------------|----|
| INTRODUZIONE                                                                         | 2  |
| METODOLOGIA DI INDAGINE                                                              | 3  |
| Indagine sismica con metodologia DOWN HOLE                                           | 3  |
| Modalità esecutive della prova                                                       | 3  |
| ELABORAZIONE DEI DATI                                                                | 6  |
| Indagine sismica con metodologia DOWN HOLE                                           | 6  |
| Picking                                                                              | 6  |
| Interpretazione                                                                      | 6  |
| PRESENTAZIONE DEI RISULTATI                                                          | 9  |
| Determinazione della velocità delle onde sismiche nei primi 30 m (V <sub>s30</sub> ) | 9  |
| Determinazione delle categorie di suolo di fondazione                                | 10 |

# APPENDICE 1 - FIGURE ED ELABORATI GRAFICI

APPENDICE 2 - CERTIFICATI PROVE SISMICHE DOWN HOLE - Sismogrammi e relative interpretazioni



del Dott. Geol. F. Barbieri e del Dott. Geol. M. Ropa

Via E. Fermi n° 11/A - 40017 SAN GIOVANNI IN PERSICETO (BO) Codice Fiscale e P. IVA 04112290376 Tel. 051 - 687.11.13 Fax 051 - 687.43.28 Web: http://www.cgastudio.eu E-mail: cgastudio@cgastudio.eu E-mail: cgastudio@cgastudio.eu

# COOP. GRANFRUTTA ZANI

Esecuzione di nº 1 prova Down Hole a 31 m per la determinazione della  $V_{\rm S30}$  per l'ampliamento dello stabilimento in località Granarolo nel Comune di Faenza (RA) - DH S1.

| PROGETTO | CODIFICA | REV. | PAGINA         |
|----------|----------|------|----------------|
| A 765    | GF 277   | 0    | Pagina 2 di 10 |

L:\A 765 - GF 277 - DH GranFrutta Zani - Granarolo - Faenza (RA)\Relazione DH Granfrutta Zani.doc

# **INTRODUZIONE**

Su incarico di COOP. GRANFRUTTA ZANI è stata redatta questa indagine geofisica, tramite l'esecuzione di una prova Down Hole a 31 m, per la determinazione della  $V_{\rm S30}$  per l'ampliamento dello stabilimento in località Granarolo nel Comune di Faenza (RA) - DH S1.

L'ubicazione della zona di indagine, effettuata su base fotoaerea 1 : 2.000, è riportata in figura n° 1 (appendice n° 1).



del Dott. Geol. F. Barbieri e del Dott. Geol. M. Ropa

Via E. Fermi nº 11/A - 40017 SAN GIOVANNI IN PERSICETO (BO) Codice Fiscale e P. IVA 04112290376 Tel. 051 - 687.11.13 Fax 051 - 687.43.28

Web: http://www.cgastudio.eu E-mail: cgastudio@cgastudio.eu

#### COOP. GRANFRUTTA ZANI

Esecuzione di n° 1 prova Down Hole a 31 m per la determinazione della  $V_{\rm S30}$  per l'ampliamento dello stabilimento in località Granarolo nel Comune di Faenza (RA) - DH S1.

| PROGETTO | CODIFICA | REV. | PAGINA         |
|----------|----------|------|----------------|
| A 765    | GF 277   | 0    | Pagina 3 di 10 |

L:\A 765 - GF 277 - DH GranFrutta Zani - Granarolo - Faenza (RA)\Relazione DH Granfrutta Zani.doc

# METODOLOGIA DI INDAGINE

# INDAGINE SISMICA CON METODOLOGIA DOWN HOLE

Lo scopo della prova consiste nel determinare la velocità di propagazione delle onde di volume, di compressione (onde P) e di taglio (onde S), calcolando il tempo ad esse necessario per spostarsi dalla sorgente ai ricevitori, di cui è nota la distanza.

Si suppone che il volume di terreno, interessato dalle indagini sia stratificato orizzontalmente e che all'interno di ogni strato il comportamento del terreno si possa considerare elastico, omogeneo ed isotropo.

# Modalità esecutive della prova

La prova consiste nel produrre, sulla superficie del terreno, sollecitazioni verticali (per la generazione di onde di compressione P) ed orizzontali (per onde di taglio polarizzate orizzontalmente SH) mediante una sorgente meccanica e nel registrare l'istante di primo arrivo del treno d'onde attraverso un sistema formato da un sensore a cinque componenti, alloggiato a profondità note all'interno del foro di sondaggio appositamente strumentato.

Conosciuta la distanza tra sorgente e ricevitori e determinato il tempo di propagazione, è possibile stimare in maniera accurata la distribuzione delle velocità sismiche (P ed SH) in corrispondenza della verticale di misura.

L'apparecchiatura utilizzata per questo tipo di prove si compone delle seguenti parti:

- sistema energizzante;
- sistema di ricezione;
- trigger;
- sistema di acquisizione dati.

I sistemi energizzanti (sia per la generazione delle onde P sia delle onde SH) devono essere in grado di generare onde elastiche ad alta frequenza ricche di energia, con forme d'onda ripetibili e direzionali, ovvero con la possibilità di ottenere prevalentemente onde di compressione e/o di taglio polarizzate su piani orizzontali (ed eventualmente anche verticali).



del Dott. Geol. F. Barbieri e del Dott. Geol. M. Ropa

Consulenze di Geologia e Ambiente

zione della V<sub>S30</sub> per l'ampliamento dello stabilimento in località Granarolo nel Comune di Faenza (RA) - DH S1.

Esecuzione di nº 1 prova Down Hole a 31 m per la determina-

COOP. GRANFRUTTA ZANI

| PROGETTO | CODIFICA | REV. | PAGINA         |
|----------|----------|------|----------------|
| A 765    | GF 277   | 0    | Pagina 4 di 10 |

L:\A 765 - GF 277 - DH GranFrutta Zani - Granarolo - Faenza (RA)\Relazione DH Granfrutta Zani.doc

Via E. Fermi nº 11/A - 40017 SAN GIOVANNI IN PERSICETO (BO) Codice Fiscale e P. IVA 04112290376 Tel. 051 - 687.11.13 Fax 051 - 687.43.28

Web: http://www.cgastudio.eu E-mail: cgastudio@cgastudio.eu

Per generare le onde di compressione P, è stato utilizzato l'impatto di una massa battente (martello) su un piatto di alluminio alloggiato sul suolo.

Per generare le onde SH è stato utilizzato un parallelepipedo di legno armato alle estremità di piastre in alluminio.

Il parallelepipedo è stato gravato di un carico statico addizionale in modo da rimanere aderente al terreno sia al momento in cui viene colpito sia successivamente, affinché l'energia prodotta non venga in parte dispersa. Con questo dispositivo è stato possibile generare essenzialmente delle onde elastiche di taglio polarizzate orizzontalmente, con uniformità nella polarizzazione e con una generazione di onde P trascurabile. Inoltre, data l'entità di energia generalmente prodotta, le deformazioni indotte nel terreno in prossimità della superficie sono da considerarsi trascurabili.

Il sistema di ricezione è costituito da cinque componenti, ciascuno dei quali è costituito da un trasduttore di velocità orientato secondo gli assi di due terne cartesiane ortogonali aventi in comune l'origine e l'asse delle ordinate e ruotate rispetto all'origine di 45°. I trasduttori di velocità sono collocati all'interno di un unico contenitore impermeabile sino a 10 Bar di pressione.

E' stato adottato un sistema di ancoraggio pneumatico per garantire un buon accoppiamento in foro tra i ricevitori e le pareti di rivestimento.

Il trigger è costituito da un circuito elettrico che viene chiuso nell'istante in cui la sorgente viene attivata, consentendo a un condensatore di scaricare la carica precedentemente immagazzinata e di produrre un impulso che viene inviato ad un sensore collegato al sistema di acquisizione dati; in questo modo è possibile individuare e visualizzare l'esatto istante in cui la sorgente viene attivata e parte la sollecitazione dinamica.

Il sistema di acquisizione dati è di tipo multicanale in grado di registrare su ciascun canale in forma digitale le forme d'onda e di conservarle su memoria di massa dinamica minima a 24 bit. Esso è collegato a ciascuno dei geofoni in foro ed al sensore del trigger e consente quindi di registrare in forma numerica e visualizzare come tracce su un apposito monitor le vibrazioni a partire dall'impulso inviato dal trigger.

# C.G.A.

# Studio Tecnico Associato Consulenze di Geologia e Ambiente

del Dott. Geol. F. Barbieri e del Dott. Geol. M. Ropa

Via E. Fermi n° 11/A - 40017 SAN GIOVANNI IN PERSICETO (BO) Codice Fiscale e P. IVA 04112290376 Tel. 051 - 687.11.13 Fax 051 - 687.43.28 Web: http://www.cgastudio.eu E-mail: cgastudio@cgastudio.eu

E-mail: cgastudio@cgastudio.eu

# COOP. GRANFRUTTA ZANI

Esecuzione di nº 1 prova Down Hole a 31 m per la determinazione della  $V_{\rm S30}$  per l'ampliamento dello stabilimento in località Granarolo nel Comune di Faenza (RA) - DH S1.

| PROGETTO | CODIFICA | REV. | PAGINA         |
|----------|----------|------|----------------|
| A 765    | GF 277   | 0    | Pagina 5 di 10 |

 $L\colon\!\backslash A$ 765 - GF 277 - DH Gran<br/>Frutta Zani - Granarolo - Faenza (RA) $\backslash$ Relazione DH Gran<br/>frutta Zani.doc

# SISMOGRAFO M.A.E. - A6000S

| CPU NS Geode GXLV 233MHz                                   |
|------------------------------------------------------------|
| Memoria RAM 128 Mb PC100 Mhz                               |
| Hard Disk 512 Mb on Compact Flash Disk Udma/33             |
| Batteria di riserva al Litio                               |
| Monitoraggio Hardware Winbond W83781D                      |
| Display LCD 10,5" Tft Transflective a colori, touch screen |
| Controller Fast Ethernet Intel 82559ER 10/100 Base-T       |
| Alimentazione con alimentatore Switching 12 Volt 2Ah       |
| Valigia in copolimeri di polypropylene antischiacciamento  |
| Temperatura di funzionamento da 0 a 60°C                   |
| Dimensioni e peso L280 X H220 X P170 mm, 3 Kg              |

# GEOFONI GEOSPACE GS-11D

| Natural Frequency                                                        | $10 \pm 0.75 \text{ Hz}$ |
|--------------------------------------------------------------------------|--------------------------|
| Coil Resistance @ 25°C ± 5%                                              | 380 Ohms                 |
| Intrinsic Voltage Sensitivity with 380 Ohm Coil ± 10%                    | 0,32 V/cm/s              |
| Normalized Transduction Constant (V/in/sec)                              | 0,42 (sq.root of Rc)     |
| Open Circuit Damping                                                     | 0,32 ± 20%               |
| Damping Constant with 380 Ohm Coil                                       | 482                      |
| Optional Coil Resistances ± 5%                                           | 56,16 Ohms               |
| Moving Mass ± 5%                                                         | 16,8 g                   |
| Typical Case to Coil Motion P-P                                          | 0,18 cm                  |
| Harmonic Distortion with Driving Velocity of 0.7 in/sec (1.8 cm/sec) P-P | 0,2 % or less            |

# Dimensioni

| Height (less terminals*) | 3,35 cm |
|--------------------------|---------|
| Diameter                 | 3,18 cm |
| Weight                   | 111 g   |

<sup>\*</sup> terminal height is 0,3429 cm

Tabella nº 1 - Tabella delle caratteristiche del sismografo e dei geofoni utilizzati.



del Dott. Geol. F. Barbieri e del Dott. Geol. M. Ropa

Via E. Fermi nº 11/A - 40017 SAN GIOVANNI IN PERSICETO (BO) Codice Fiscale e P. IVA 04112290376

Tel. 051 - 687.11.13 Fax 051 - 687.43.28 E-mail: cgastudio@cgastudio.eu Web: http://www.cgastudio.eu

#### COOP. GRANFRUTTA ZANI

Esecuzione di nº 1 prova Down Hole a 31 m per la determinazione della  $V_{\rm S30}$  per l'ampliamento dello stabilimento in località Granarolo nel Comune di Faenza (RA) - DH S1.

| PROGETTO | CODIFICA | REV. | PAGINA         |
|----------|----------|------|----------------|
| A 765    | GF 277   | 0    | Pagina 6 di 10 |

L:\A 765 - GF 277 - DH GranFrutta Zani - Granarolo - Faenza (RA)\Relazione DH Granfrutta Zani.doc

# ELABORAZIONE DEI DATI

# INDAGINE SISMICA CON METODOLOGIA DOWN HOLE

# **Picking**

La valutazione dei tempi dei primi arrivi, sia nel campo delle onde P che delle onde SH, viene effettuato utilizzando il software di picking TOM TIME, prodotto dalla Rimrock Geophisic Inc. in collaborazione con la Geo Tom LLC. Tale software permette sia di effettuare analisi di segnali così come rilevati in campagna sia di procedere a filtrazioni, amplificazioni e sovrapposizioni dei segnali stessi.

È importante sottolineare come, nel caso delle onde SH, si sia utilizzato il software per sovrapporre i segnali in opposizione di fase così da rendere più evidente gli arrivi del primo impulso polarizzato orizzontalmente.

# Interpretazione

Poiché le onde sismiche prodotte dalla sorgente non si propagano esattamente in direzione verticale rispetto ai ricevitori, data la posizione della sorgente, è necessario correggere i tempi di arrivo stimati per tenere conto dell'inclinazione del percorso effettivo.

Indicata con z la profondità del ricevitore, con d la distanza effettiva tra sorgente e ricevitore e con R la distanza superficiale tra sorgente e centro del foro con t il tempo determinato dalle tracce di registrazione, il tempo corretto risulta:

$$t_{v} = \frac{z}{d}t = \frac{z}{\sqrt{z^2 + R^2}}t$$

Dividendo la profondità a cui viene collocato il ricevitore per il tempo corretto si ricavano i valori di velocità per ciascuno dei ricevitori, in corrispondenza di ciascuna delle profondità considerate.



# Studio Tecnico Associato

del Dott. Geol. F. Barbieri e del Dott. Geol. M. Ropa

# COOP. GRANFRUTTA ZANI

Consulenze di Geologia e Ambiente

Esecuzione di nº 1 prova Down Hole a 31 m per la determinazione della  $V_{\rm S30}$  per l'ampliamento dello stabilimento in località Granarolo nel Comune di Faenza (RA) - DH S1.

| PROGETTO | CODIFICA | REV. | PAGINA         |
|----------|----------|------|----------------|
| A 765    | GF 277   | 0    | Pagina 7 di 10 |

L:\A 765 - GF 277 - DH GranFrutta Zani - Granarolo - Faenza (RA)\Relazione DH Granfrutta Zani.doc

Via E. Fermi n° 11/A - 40017 SAN GIOVANNI IN PERSICETO (BO) Codice Fiscale e P. IVA 04112290376 Tel. 051 - 687.11.13 Fax 051 - 687.43.28 Web: <a href="http://www.cgastudio.eu">http://www.cgastudio.eu</a> E-mail: cgastudio@cgastudio.eu

E-mail: cgastudio@cgastudio.eu

Per quanto concerne il calcolo dei parametri elastici sono state utilizzate le seguenti formule:

Coefficiente di Poisson:

$$v = \frac{V_P^2 - V_S^2}{2(V_P^2 - V_S^2)}$$

Dove:

 $V_p$  = velocità onde di compressione;

 $V_s$  = velocità onde di taglio;

Modulo di taglio:

$$G = \gamma V_S^2$$

Dove:

 $\gamma$  = densità del mezzo attraversato;

 $V_s$  = velocità onde di taglio;

Modulo di Compressibilità volumetrica:

$$E_v = \gamma (V_P^2 - \frac{4}{3}V_S^2)$$

Dove:

 $\gamma$  = densità del mezzo attraversato;

 $V_p$  = velocità onde di compressione;

 $V_s$  = velocità onde di taglio;

Modulo di Young:

$$E = 2\gamma V_S^2 (1+v)$$

Dove:

 $\nu$  = Coefficiente di Poisson

# C.G.A.

# Studio Tecnico Associato Consulenze di Geologia e Ambiente

del Dott. Geol. F. Barbieri e del Dott. Geol. M. Ropa

Via E. Fermi nº 11/A - 40017 SAN GIOVANNI IN PERSICETO (BO) Codice Fiscale e P. IVA 04112290376 Tel. 051 - 687.11.13 Fax 051 - 687.43.28

Web: <a href="http://www.cgastudio.eu">http://www.cgastudio.eu</a> E-mail: cgastudio@cgastudio.eu

#### COOP. GRANFRUTTA ZANI

Esecuzione di nº 1 prova Down Hole a 31 m per la determinazione della  $V_{\rm S30}$  per l'ampliamento dello stabilimento in località Granarolo nel Comune di Faenza (RA) - DH S1.

| PROGETTO | CODIFICA | REV. | PAGINA         |
|----------|----------|------|----------------|
| A 765    | GF 277   | 0    | Pagina 8 di 10 |

L:\A 765 - GF 277 - DH GranFrutta Zani - Granarolo - Faenza (RA)\Relazione DH Granfrutta Zani.doc

Le formule utilizzate per il calcolo dei parametri elastici si basano essenzialmente sulle proprietà sismiche dei terreni ( $V_P$  e  $V_S$ ): i parametri elastici calcolati non sono pertanto sempre confrontabili con quelli ottenuti staticamente da prove in situ e di laboratorio.

E' inoltre opportuno ricordare che, nel caso di completa saturazione dei materiali attraversati dai treni d'onda, la velocità di propagazione delle onde P misurata risulta essere quella caratteristica dell'acqua; ne consegue che il calcolo dei parametri elastici perde di significato.

In appendice 2 sono riportati i certificati delle prove svolte e le relative interpretazioni, sia con il metodo diretto che con il metodo del pseudointervallo.



del Dott. Geol. F. Barbieri e del Dott. Geol. M. Ropa

Via E. Fermi nº 11/A - 40017 SAN GIOVANNI IN PERSICETO (BO) Codice Fiscale e P. IVA 04112290376 Tel. 051 - 687.11.13 Fax 051 - 687.43.28

 $Web: \ \underline{http://www.cgastudio.eu}$ E-mail: cgastudio@cgastudio.eu

#### COOP. GRANFRUTTA ZANI

Esecuzione di nº 1 prova Down Hole a 31 m per la determinazione della V<sub>S30</sub> per l'ampliamento dello stabilimento in località Granarolo nel Comune di Faenza (RA) - DH S1.

| PROGETTO | CODIFICA | REV. | PAGINA         |
|----------|----------|------|----------------|
| A 765    | GF 277   | 0    | Pagina 9 di 10 |

L:\A 765 - GF 277 - DH GranFrutta Zani - Granarolo - Faenza (RA)\Relazione DH Granfrutta Zani.doc

# PRESENTAZIONE DEI RISULTATI

# Determinazione della velocità delle onde sismiche nei primi 30 m (V<sub>s30</sub>)

Utilizzando le metodologie e le formule di cui al capitolo precedente, è possibile individuare la seguente sezione sismica di sintesi (30 m):

| Strato | Spessore medio (m) | Vs (m/s) |
|--------|--------------------|----------|
| 1      | 8,00               | 201,17   |
| 2      | 22,00              | 261,26   |

Tabella nº 2 – Stratigrafia da prova sismica e velocità di propagazione dell'onda sismica

Seguendo le prescrizioni dell'OPCM 3274/2003 e del D.M. 14.01.2008 la determinazione della V<sub>s30</sub> è stata ottenuta utilizzando la formula:

$$V_{s30} = \frac{30}{\sum_{\Delta n} \frac{h_i}{V_{si}}}$$

dove:

 $h_i$  = spessore dello strato -iesimo

 $V_{si}$  = Velocità orizzontale dello strato -iesimo

Sulla base di quanto esposto è pertanto possibile affermare che la V<sub>S30</sub> relativa ai primi 30 m di terreno rispetto al piano di campagna è la seguente:

| $V_{s30}$ 241,9 |
|-----------------|
|-----------------|

Tabella n° 3a - V<sub>S30</sub> riferite ai primi 30 m



del Dott. Geol. F. Barbieri e del Dott. Geol. M. Ropa

Via E. Fermi n° 11/A - 40017 SAN GIOVANNI IN PERSICETO (BO) Codice Fiscale e P. IVA 04112290376 Tel. 051 - 687.11.13 Fax 051 - 687.43.28 Web: http://www.cgastudio.eu E-mail: cgastudio@cgastudio.eu

E-mail: cgastudio@cgastudio.eu

# COOP. GRANFRUTTA ZANI

Esecuzione di nº 1 prova Down Hole a 31 m per la determinazione della  $V_{\rm S30}$  per l'ampliamento dello stabilimento in località Granarolo nel Comune di Faenza (RA) - DH S1.

| PROGETTO | CODIFICA | REV. | PAGINA          |
|----------|----------|------|-----------------|
| A 765    | GF 277   | 0    | Pagina 10 di 10 |

L:\A 765 - GF 277 - DH GranFrutta Zani - Granarolo - Faenza (RA)\Relazione DH Granfrutta Zani.doc

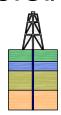
# Determinazione delle categorie di suolo di fondazione

Utilizzando la tabella di seguito riportata, si è proceduto alla determinazione della Categoria di appartenenza del suolo di fondazione:

| A  | Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di V <sub>s30</sub> superiori a 800m/s, eventualmente comprendenti in superficie uno strato di alterazione, con spessore massimo pari a 3m.                                                                            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В  | Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V <sub>s30</sub> compresi tra 360 m/s e 800 m/s. |
| С  | Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V <sub>s30</sub> compresi tra 180 m/s e 360 m/s.      |
| D  | Depositi di terreni a grana grossa scarsamente addensati o terreni a grana fina scarsamente consistenti con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di V <sub>s30</sub> inferiori a 180 m/s.               |
| E  | Terreni dei sottosuoli di tipo C e D e con spessore non superiore a 20 m, posti sul substrato di riferimento ( con V <sub>s30</sub> > 800 m/s)                                                                                                                                                     |
| S1 | Depositi di terreni caratterizzati da valori di Vs30<100, che includonouno strato spesso almeno 8 m di terreni a grana fine di bassa consistenza di bassa consistenza oppure che includono almeno 3 m di torba o di argille altamente organiche                                                    |
| S2 | Depositi di terreno suscettibili di liquefazione, di argille sensitive, o qualsiasi altra categoria di terreno non classificabile nei tipi precedenti.                                                                                                                                             |

Tabella n° 4 – Definizione dei profili stratigrafici

I terreni indagati appartengono alla categoria C.




Laboratorio di Geofisica

# APPENDICE 1

- Figure ed elaborati grafici

### C.G.A.



Committente: COOP. GRANFRUTTA ZANI

Località: Granarolo - Comune di Faenza (RA)

Prova: DH S1

Data: 11/01/2012

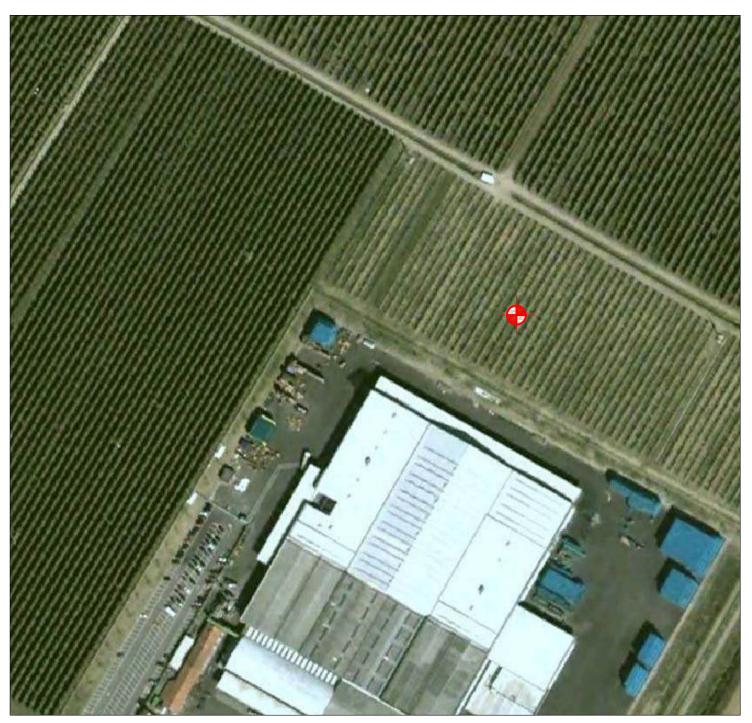
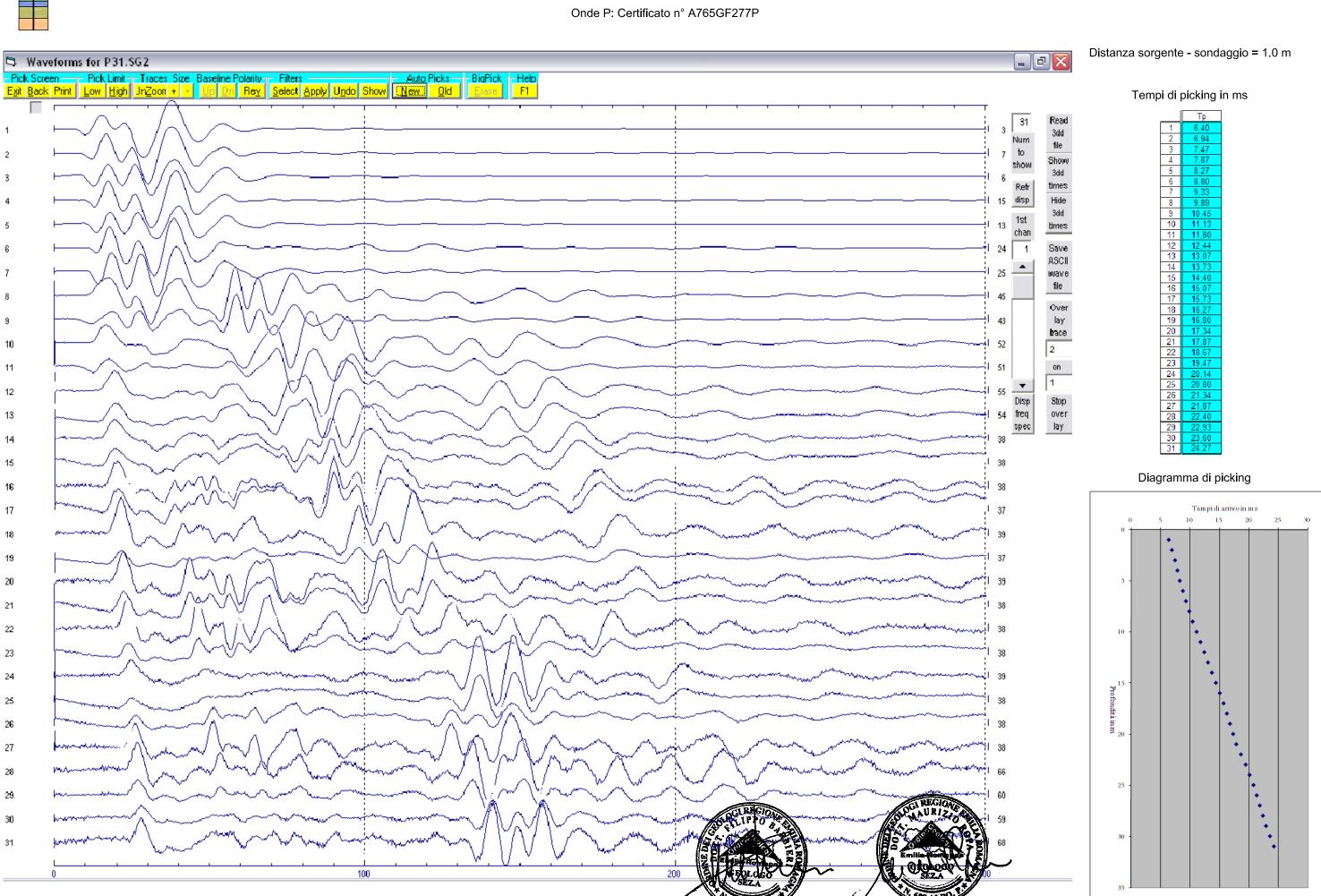



FIGURA N°1
Ubicazione prova DH



## APPENDICE 2

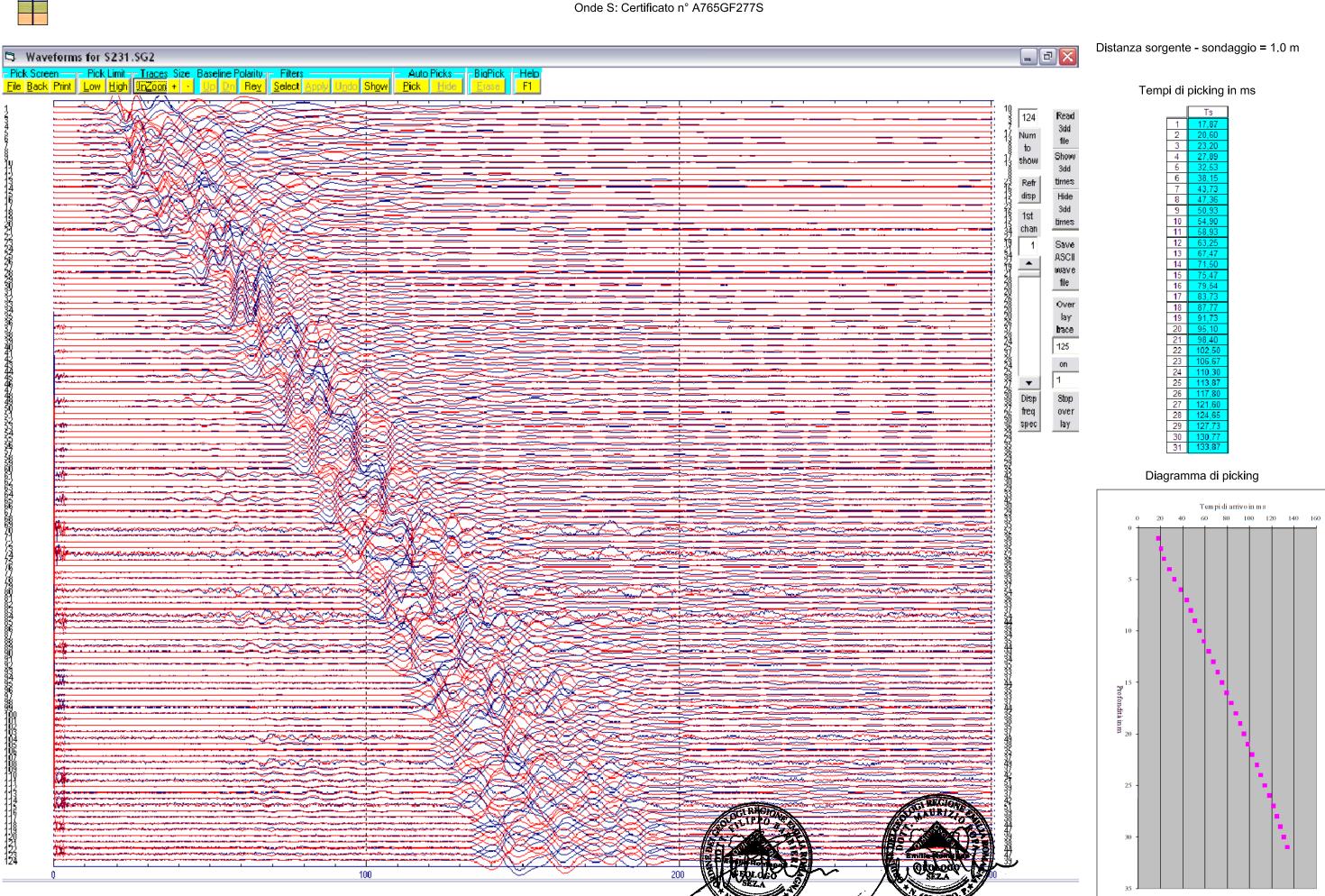

- Certificati prove DOWN HOLE

Committente: COOP. GRANFRUTTA ZANI

Prova: DH S1

Località: Granarolo - Comune di Faenza (RA)

Data: 11/01/2012




Committente: COOP. GRANFRUTTA ZANI

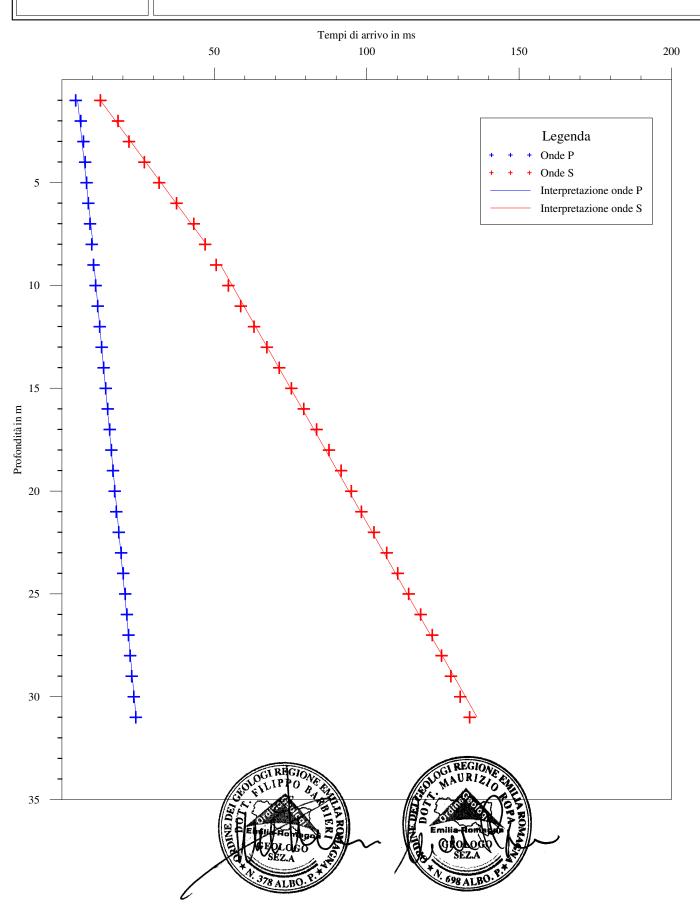
Prova: DH S1

Località: Granarolo - Comune di Faenza (RA)

Data: 11/01/2012






### Committente: COOP. GRANFRUTTA ZANI Prova: DH S1

Località: Granarolo - Comune di Faenza (RA)

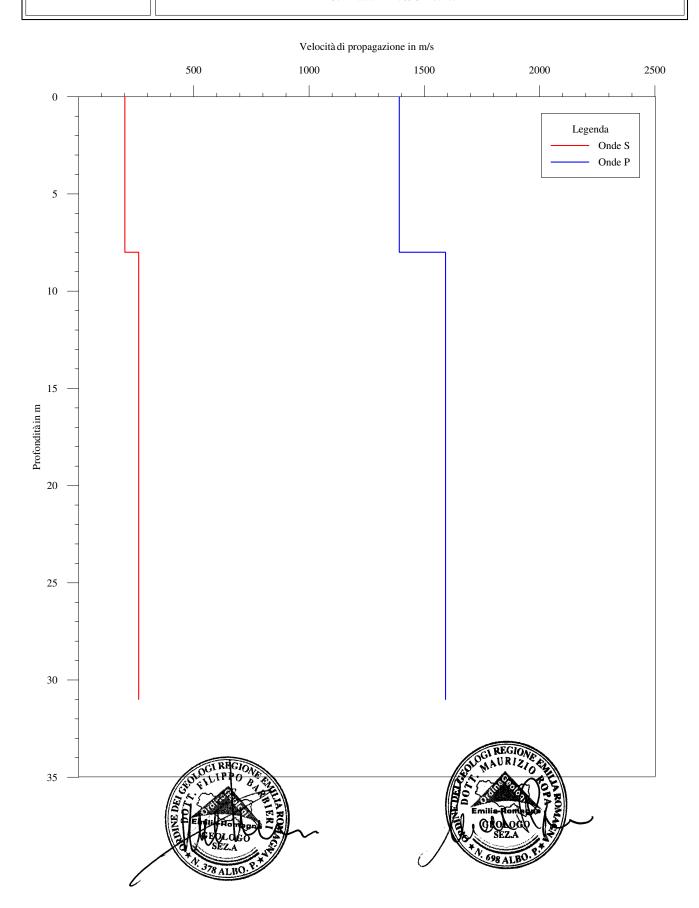
**Data:** 11 gennaio 2012

### Interpretazione con il metodo diretto

Certificato nº A765GF277dro






### Committente: COOP. GRANFRUTTA ZANI Prova: DH S1

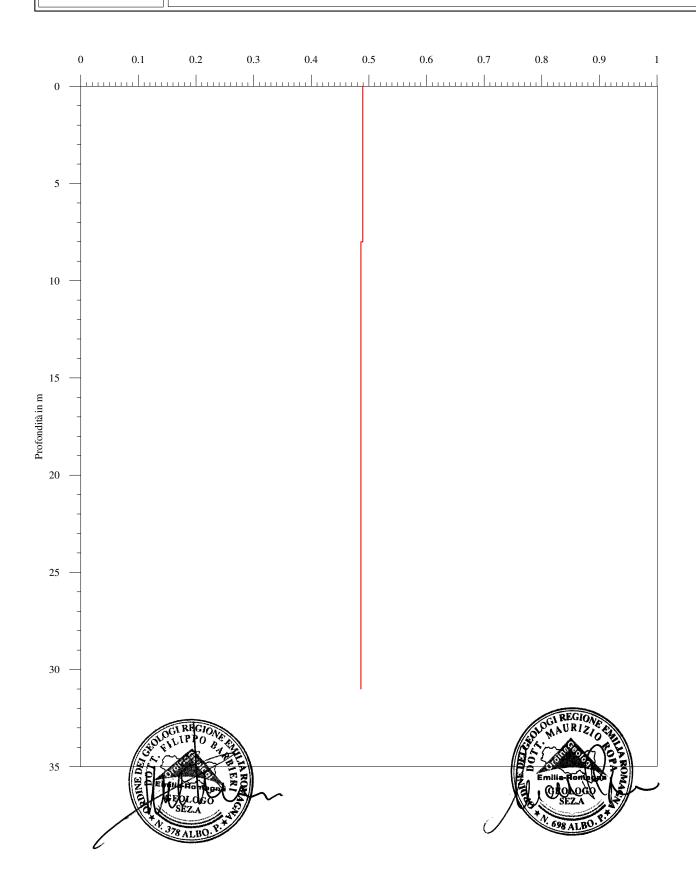
Località: Granarolo - Comune di Faenza (RA)

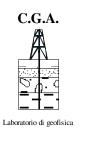
Data: 11 gennaio 2012

### Interpretazione con il metodo diretto

Certificato nº A765GF277vstr





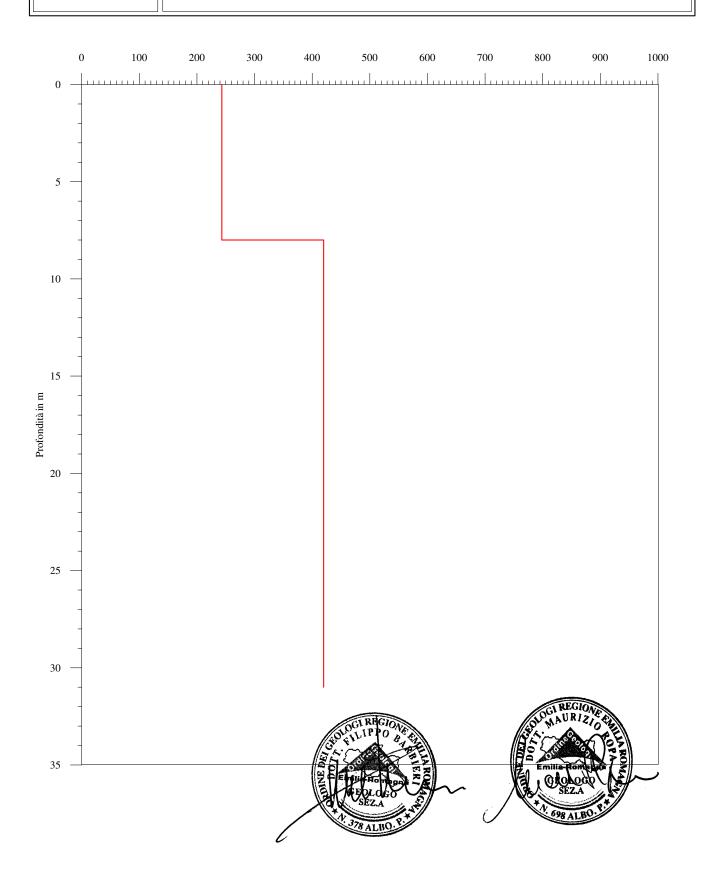


Committente: COOP. GRANFRUTTA ZANI Prova: DH S1 Località: Granarolo - Comune di Faenza (RA)

**Data:** 11 gennaio 2012

### Metodo diretto - Coefficiente di Poisson

Certificato nº A765GF277dirpoi





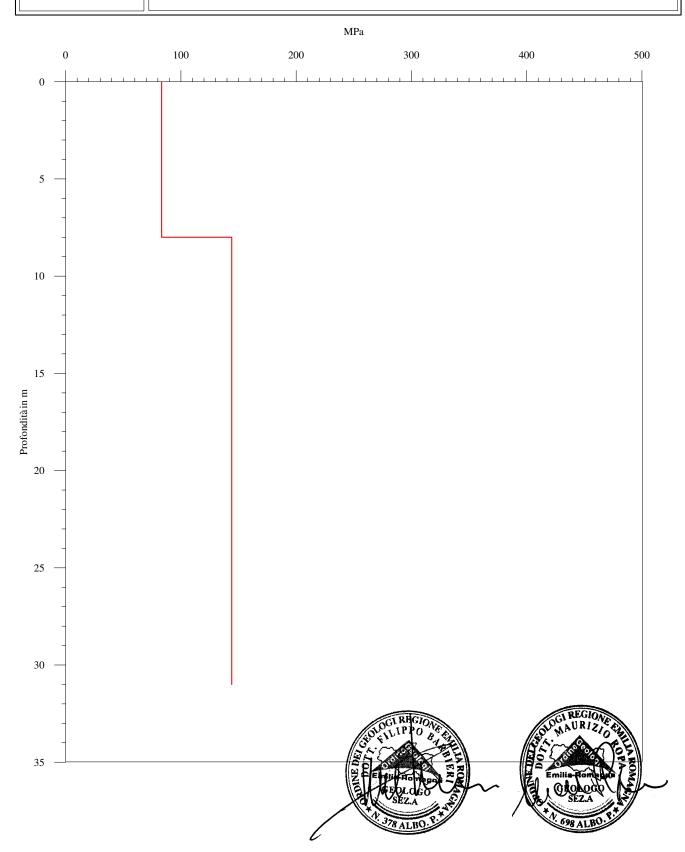

### Committente: COOP. GRANFRUTTA ZANI Prova: DH S1 Località: Granarolo - Comune di Faenza (RA)

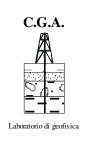
Data: 11 gennaio 2012

### Metodo diretto - Modulo di Young

Certificato n° A765GF277diryou







## Committente: COOP. GRANFRUTTA ZANI Prova: DH S1 Località: Granarolo - Comune di Faenza (RA)

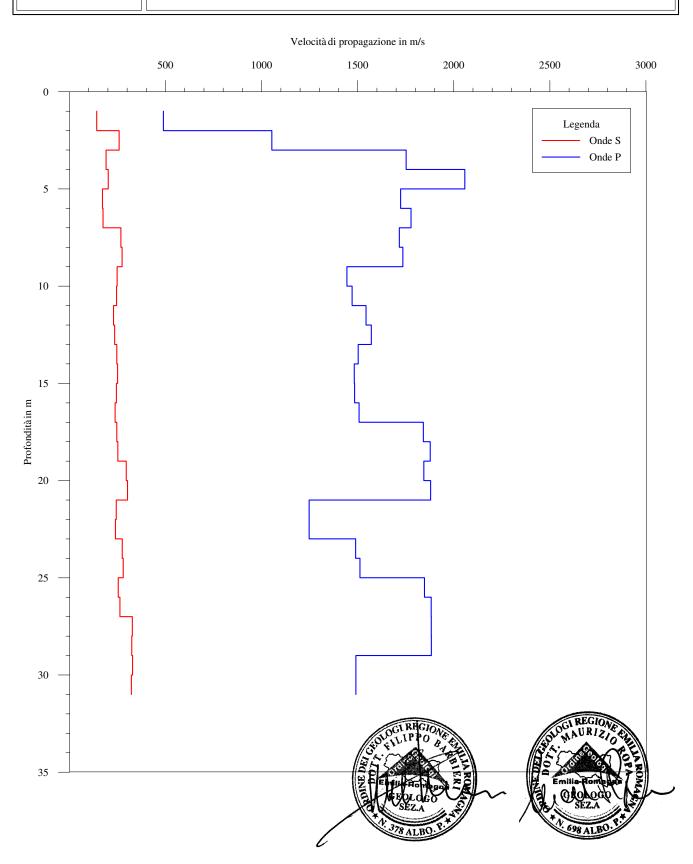
**Data:** 11 gennaio 2012

### Metodo diretto - Modulo di deformazione al taglio

Certificato nº A765GF277dirtag






### Committente: COOP. GRANFRUTTA ZANI Prova: DH S1

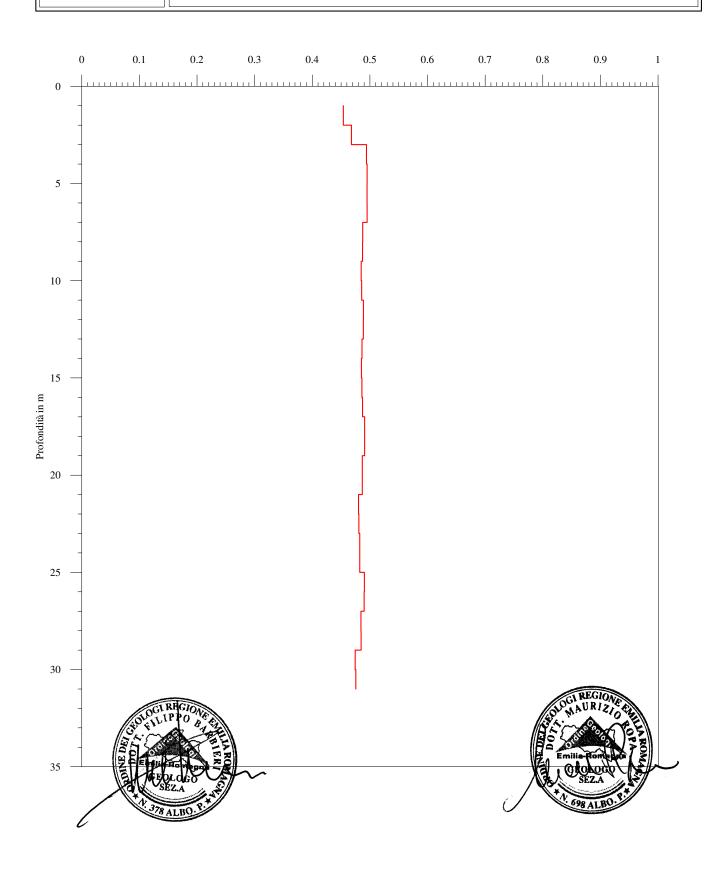
Località: Granarolo - Comune di Faenza (RA)

Data: 11 gennaio 2012

### Interpretazione con il metodo del pseudointervallo

Certificato nº A765GF277vint





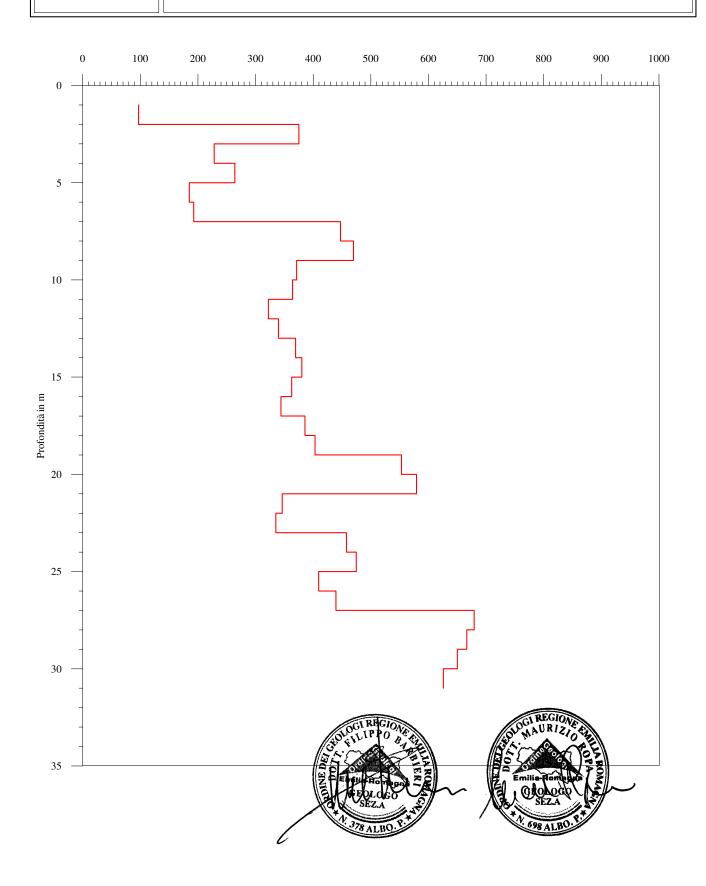

## Committente: COOP. GRANFRUTTA ZANI Prova: DH S1 Località: Granarolo - Comune di Faenza (RA)

Data: 11 gennaio 2012

### Metodo pseuodointervallo - Coefficiente di Poisson

Certificato nº A765GF277intpoi





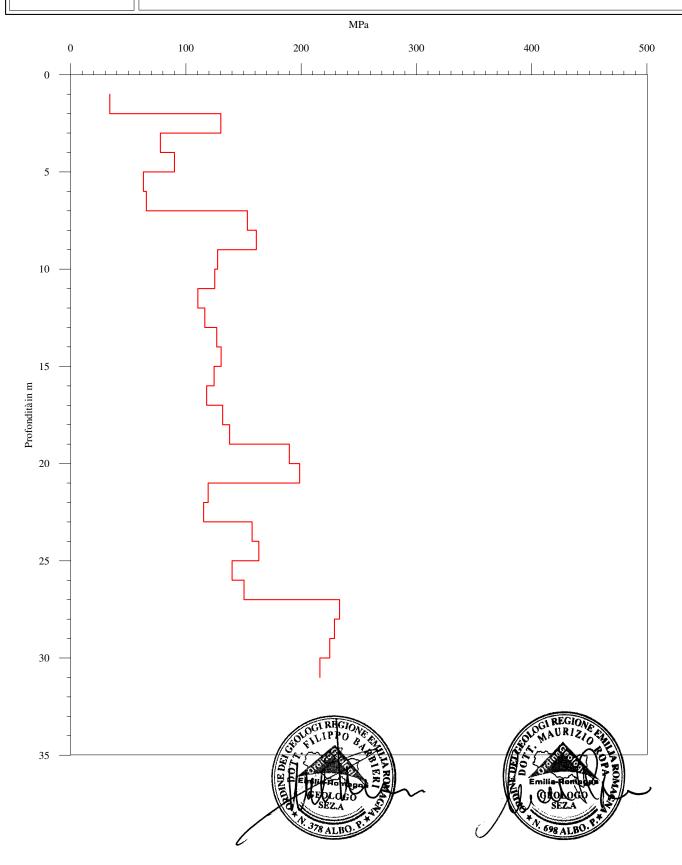

### Committente: COOP. GRANFRUTTA ZANI Prova: DH S1 Località: Granarolo - Comune di Faenza (RA)

Data: 11 gennaio 2012

### Metodo pseudointervallo - Modulo di Young

Certificato n° A765GF277intyou






## Committente: COOP. GRANFRUTTA ZANI Prova: DH S1 Località: Granarolo - Comune di Faenza (RA)

**Data:** 11 gennaio 2012

### Metodo pseudointervallo - Modulo di deformazione al taglio

Certificato nº A765GF277inttag



| Metodo diretto - Velocità e parametri calcolati                                                                                                  |         |        |       |      |        |        |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------|-------|------|--------|--------|--|--|
| Profondità (m) Vp (m/s) Vs (m/s) γ <sub>dinamico (KN)</sub> Coefficiente di Poisson Modulo di Young (MPa) Modulo di deformazione al taglio (MPa) |         |        |       |      |        |        |  |  |
| 8,00                                                                                                                                             | 1391,56 | 201,17 | 19,79 | 0,49 | 243,22 | 83,26  |  |  |
| 31,00                                                                                                                                            | 1592,06 | 261,26 | 20,30 | 0,49 | 419,95 | 144,07 |  |  |

|                | Metodo intervallo - Velocità e parametri calcolati |          |                |                         |                       |                                        |  |  |
|----------------|----------------------------------------------------|----------|----------------|-------------------------|-----------------------|----------------------------------------|--|--|
| Profondità (m) | Vp (m/s)                                           | Vs (m/s) | γdinamico (KN) | Coefficiente di Poisson | Modulo di Young (MPa) | Modulo di deformazione al taglio (MPa) |  |  |
| 2,00           | 488,66                                             | 141,96   | 16,22          | 0,45                    | 96,92                 | 33,99                                  |  |  |
| 3,00           | 1053,30                                            | 258,41   | 18,77          | 0,47                    | 375,17                | 130,30                                 |  |  |
| 4,00           | 1752,19                                            | 190,35   | 20,67          | 0,49                    | 228,20                | 77,88                                  |  |  |
| 5,00           | 2057,24                                            | 201,59   | 21,31          | 0,50                    | 264,09                | 90,06                                  |  |  |
| 6,00           | 1723,25                                            | 171,60   | 20,61          | 0,49                    | 185,01                | 63,10                                  |  |  |
| 7,00           | 1777,65                                            | 174,63   | 20,73          | 0,50                    | 192,74                | 65,73                                  |  |  |
| 8,00           | 1716,65                                            | 267,62   | 20,59          | 0,49                    | 447,38                | 153,34                                 |  |  |
| 9,00           | 1734,85                                            | 274,03   | 20,63          | 0,49                    | 469,91                | 161,10                                 |  |  |
| 10,00          | 1444,06                                            | 248,06   | 19,93          | 0,48                    | 371,29                | 127,49                                 |  |  |
| 11,00          | 1470,92                                            | 245,17   | 20,00          | 0,49                    | 364,17                | 124,97                                 |  |  |
| 12,00          | 1543,38                                            | 229,36   | 20,18          | 0,49                    | 322,30                | 110,38                                 |  |  |
| 13,00          | 1571,08                                            | 235,11   | 20,25          | 0,49                    | 339,77                | 116,38                                 |  |  |
| 14,00          | 1502,80                                            | 246,42   | 20,08          | 0,49                    | 369,51                | 126,77                                 |  |  |
| 15,00          | 1482,36                                            | 250,37   | 20,02          | 0,49                    | 380,26                | 130,53                                 |  |  |
| 16,00          | 1483,80                                            | 244,45   | 20,03          | 0,49                    | 362,73                | 124,45                                 |  |  |
| 17,00          | 1507,34                                            | 237,64   | 20,09          | 0,49                    | 344,09                | 117,96                                 |  |  |
| 18,00          | 1841,69                                            | 246,55   | 20,87          | 0,49                    | 385,70                | 131,90                                 |  |  |
| 19,00          | 1877,56                                            | 251,63   | 20,94          | 0,49                    | 403,21                | 137,89                                 |  |  |
| 20,00          | 1844,00                                            | 295,63   | 20,87          | 0,49                    | 553,17                | 189,69                                 |  |  |
| 21,00          | 1879,56                                            | 302,00   | 20,95          | 0,49                    | 579,34                | 198,68                                 |  |  |
| 22,00          | 1247,14                                            | 243,30   | 19,38          | 0,48                    | 346,30                | 119,28                                 |  |  |
| 23,00          | 1247,39                                            | 239,28   | 19,38          | 0,48                    | 335,11                | 115,37                                 |  |  |
| 24,00          | 1489,15                                            | 274,85   | 20,04          | 0,48                    | 457,73                | 157,43                                 |  |  |
| 25,00          | 1511,97                                            | 279,52   | 20,10          | 0,48                    | 474,75                | 163,30                                 |  |  |
| 26,00          | 1847,51                                            | 254,00   | 20,88          | 0,49                    | 409,47                | 140,08                                 |  |  |
| 27,00          | 1882,67                                            | 262,71   | 20,96          | 0,49                    | 439,52                | 150,39                                 |  |  |
| 28,00          | 1883,01                                            | 327,23   | 20,96          | 0,48                    | 679,36                | 233,34                                 |  |  |
| 29,00          | 1883,32                                            | 324,10   | 20,96          | 0,48                    | 666,58                | 228,90                                 |  |  |
| 30,00          | 1490,52                                            | 328,40   | 20,05          | 0,47                    | 650,12                | 224,80                                 |  |  |
| 31,00          | 1490,66                                            | 322,10   | 20,05          | 0,48                    | 625,83                | 216,25                                 |  |  |

# Prove di laboratorio geotecnico



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

#### CERTIFICATO no:

CSP 11/1329-01

COMMESSA: 11/239 **VERBALE DI ACCETTAZIONE n°:** 

11/1329 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

sacchetto di pvc

Sondaggio:

Campione:

SPT1 Profondità:

9.00

9.45

m

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

#### IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE | DESCRIZIONE PROVA      | n° prove | NORMATIVA DI RIFERIMENTO |
|--------|------------------------|----------|--------------------------|
| GRA    | Analisi granulometrica | 1 1      | ASTM D 422               |

DATA INIZIO PROVA:

18/01/2012

DATA TERMINE PROVA:

26/01/2012



TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Geol. Paolo Gol

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR\_007 (Rev. 1 del 04/05) File: CSP\_11\_1329\_01 Sistema Qualità SINERGEA srl

CERTIFICATO nº

CSP 11/1329-01

DATA EMISSIONE

31/01/2012

Pagina 2 di 2

**ANALISI GRANULOMETRICA** 

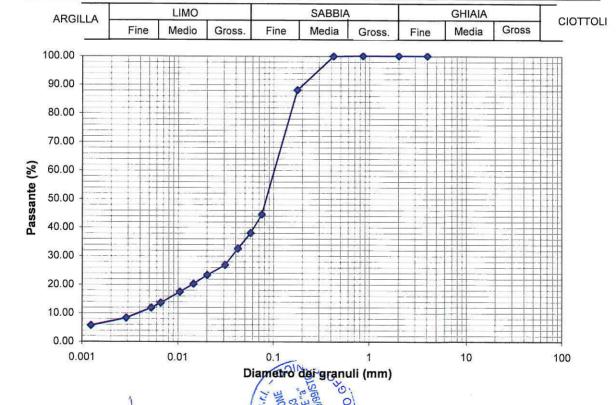
**ASTM D 422** 

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri.

1

**CAMPIONE:** 


SPT1

PROFONDITA':

9.00

9.45 m

| А            | NALISI PER | VAGLIATUI | RA         | ANALISI PER SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EDIMEI   | NTAZIO   | NE                                      |
|--------------|------------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|-----------------------------------------|
| massa prov   | vino 34    | 12.76 g   |            | massa provino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.97    | g        |                                         |
| profondità j | orovino    | - +       | - m        | profondità provino                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        | ÷ -      | m                                       |
| VAGLI        | APERTURA   | PASSANTE  | TRATTENUTO | $G_s$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.700    | - assu   | nto                                     |
| e.           | mm         | % in peso | % in peso  | Riferimento: -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |                                         |
| 1 1/2 "      | 38.1       | -         | -          | eseguita sul passante a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l vaglic | 200      | - 17 (SMIT)                             |
| 1"           | 25.4       | -         | -          | The same of the sa | 51H      |          |                                         |
| 3/4 "        | 19.05      | -         | [          | DIAMETRO EQUIVALENTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | % IN P   | ESO PIU' | FINE DI D                               |
| 3/8 "        | 9.525      | -         | -          | D (mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |                                         |
| 5            | 4          | 100.00    | 0.00       | 0.05711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 38.00    | )                                       |
| 10           | 2          | 100.00    | 0.00       | 0.04212                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 32.55    | 5                                       |
| 20           | 0.85       | 99.98     | 0.02       | 0.03102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 26.81    |                                         |
| 30           | 0.59       | -         | _          | 0.02009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 23.27    | 7                                       |
| 40           | 0.42       | 99.90     | 0.08       | 0.01449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 20.18    | <br>}                                   |
| 50           | 0.297      |           | -          | 0.01042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | 17.38    | }                                       |
| 80           | 0.177      | 88.04     | 11.87      | 0.00661                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | 13.55    | · · · · · · · · · · · · · · · · · · ·   |
| 100          | 0.149      | -         |            | 0.00529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | 11.78    | }                                       |
| 140          | 0.105      | -         | _          | 0.00288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1        | 8.25     |                                         |
| 200          | 0.075      | 44.49     | 43.55      | 0.00124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | 5.60     | • • • • • • • • • • • • • • • • • • • • |



DIRETTORE DI LABORATORIO

Sperimentatore

40057 Granarolo de l'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax/+39-0516058949

SINERGEA s

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

### RIEPILOGO CERTIFICATI DI PROVA

DATA DI EMISSIONE: 31/01/2012

| COMMESSA N°:      | 11/239                                  |                  | VERBALE DI ACCETTAZ       | IONE N°:   | 11/1325                  | CSP                            |                          |
|-------------------|-----------------------------------------|------------------|---------------------------|------------|--------------------------|--------------------------------|--------------------------|
|                   | -                                       |                  | DATA AC                   | CETTAZIONE | 21/12                    | /2011                          |                          |
| RICHIEDENTE:      | Dott. Geol.                             | Albert Van Zutph | en                        |            | ************************ |                                |                          |
| CONSEGNATARIO:    |                                         |                  | SOGEO                     |            |                          |                                |                          |
| COMMITTENTE:      |                                         |                  | P. AGRICOLA               |            |                          |                                |                          |
| LOCALITA':        | FAENZA                                  |                  |                           |            |                          |                                |                          |
| CANTIERE:         | VIA MONT                                |                  | , 4                       |            |                          |                                |                          |
| SONDAGGIO:        | 1                                       | CAMPIONE: CI 1   |                           |            |                          |                                |                          |
| PROFONDITA' (m):  | 1.10-1.60                               |                  | CONTENITORE /PRESTAZIONE: | Fustella   | di acciaio               | ****************************** |                          |
| PRELIEVO/PROVA ES | SEGUITO DA:                             | ditta SOGEO      |                           |            |                          |                                |                          |
|                   |                                         |                  |                           |            |                          |                                |                          |
|                   |                                         |                  | DATA ESECUZIONE           | PROVE FS o | PRELIEVO CA              | MPIONE:                        | ************************ |
| OSSERVAZIONI:     | *************************************** |                  |                           |            | 2:74225144244744         | *******************            |                          |

#### PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

| CODICE<br>PROVA | DESCRIZIONE SINTETICA                                                                     | Q.tà | NORME DI<br>RIFERIMENTO | CERTIFICATO<br>DI PROVA |
|-----------------|-------------------------------------------------------------------------------------------|------|-------------------------|-------------------------|
| DSC01a          | Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica | 1    | ASTM D 2488-84          | CSP11/1325-01           |
| GRT04           | Granulometria combinata per vagliatura e sedimentazione                                   | 1    | ASTM D 422              | CSP11/1325-02           |
| LIM01           | Determinazione limiti: LL e LP                                                            | 1    | CNR UNI 10014           | CSP11/1325-03           |
| PSG01           | Peso specifico dei grani                                                                  | 1    | CNR UNI 10013           | CSP11/1325-04           |
| TDR01           | Prova di taglio diretto CD                                                                | 3    | ASTM D 3080             | CSP11/1325-05           |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |

per SINERGEA srl

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

**CERTIFICATO** n°:

CSP 11/1325-01

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1325 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI 1

Profondità:

1.10 1.60

m

**DATA PRELIEVO:** 

**PRELIEVO EFFETTUATO:** 

da ditta SOGEO

DATI FORNITI da:

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI:

#### IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE | DESCRIZIONE PROVA                   | n° prove | NORMATIVA DI RIFERIMENTO |  |
|--------|-------------------------------------|----------|--------------------------|--|
| DSC    | Descrizione geotecnica del campione | 1        | ASTM D 2488-84           |  |

DATA INIZIO PROVA:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA

17/01/2012

DATA TERMINE PROVA:

17/01/2012

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Geol. Paolo COLL

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR\_001 (Rev. 1 del 04/05)

File: CPR\_001\_DSC.xls

**CERTIFICATO** n°

CSP\_11/1325-01

DATA EMISSIONE

31/01/2012

Pagina 2 di 3

**DESCRIZIONE GEOTECNICA DEL CAMPIONE** 

**CAMPIONE:** 

CI1

PROFONDITA':

**ASTM D2488** 

1.10

1.60

Data descrizione

**SONDAGGIO:** 

17/01/12

Forma del campione

: cilindrica

Qualità del campione (AGI): Q.5.da 1.36m Dimensioni del campione

1

: L = 28 cm;  $\phi = 8.4 \text{ cm}$ 

| Profo  | ndità                   | Descrizione                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|--------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| da m   | a m                     |                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 1.32   | 1.36                    | Campione rimaneggiato.                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 1.36   | 1.60                    | A con L passante a L con A, di colore bruno giallastro chiaro (HUE 2.5Y 6/4).  Presenza di livelli a maggiore contenuto della frazione limosa.  Presenza di veli e puntinature nerastre e brunastre, veli calcarei, calcinelli, piccoli frustoli e mica.  Media reazione a contatto con HCl 5%. |  |  |  |  |  |
| EGENDA | <b>G</b> = 0<br>Pericol | Argilla/Argilloso L = Limo/Limoso S = Sabbia/Sabbioso T = Torba/Torboso Shiaia/Ghiaioso F = Fine M = Medio C = Grossolano ori si fa riferimento a: "Munsell Soil Color Charts" (sigla tra parentesi) rerpendicolare all'asse del campione = parallelo all'asse del campione                     |  |  |  |  |  |

\_ = perpendicolare all'asse del campione = parallelo all'asse del campione

| PO                                                     | SCH      |        | L CAMPI |              | P.P.                                                  |       | - parallelo all'asse del campione |
|--------------------------------------------------------|----------|--------|---------|--------------|-------------------------------------------------------|-------|-----------------------------------|
| RAP                                                    | Prof. No |        |         |              | A10115 99431 103                                      | T.V.  | PROVE ESEGUITE                    |
| E                                                      |          | minale | Profond |              | (MPa)                                                 | (MPa) |                                   |
| SEP                                                    | (m)      |        |         | (m)          |                                                       |       | <u></u>                           |
| È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPOI | 1.10     |        |         |              |                                                       |       |                                   |
| È VIETATA LA R                                         |          |        |         | 1.32<br>1.36 | 0.53 <sub>⊥</sub> 0.41 <sub>⊥</sub> 0.34 <sub>⊥</sub> |       | CNW, MVT, LIM, GRT, PSG, TDR      |
|                                                        | 1.60     |        |         | 1.60         | 0.39 ⊥                                                | CONC  | ESCIONE O                         |

DIRETTORE DI LABORATORIO

RIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

**CERTIFICATO** n°

CSP\_11/1325-01

DATA EMISSIONE

31/01/2012

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO n°:

CAMPIONE: CI 1

PROFONDITA':

1.10

1.60

m



DIRETTORE DI LABORATORIO

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

File: CPR\_001\_DSC.xls

CPR 001 (Rev. 1 del 04/05)



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

CERTIFICATO no:

CSP 11/1325-02

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1325 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

**COMMITTENTE:** GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI 1

Profondità:

1.10

1.60

m

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da :

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

#### IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE DESCRIZIONE PROVA |                        | n° prove | NORMATIVA DI RIFERIMENTO |  |
|--------------------------|------------------------|----------|--------------------------|--|
| GRA                      | Analisi granulometrica | 1        | ASTM D 422               |  |

DATA INIZIO PROVA:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA

18/01/2012

DATA TERMINE PROVA:

26/01/2012

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Geol. Paolo COLL

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA ;

01909241208 - R.E.A. 398565

CPR\_007 (Rev. 1 del 04/05) File: CSP\_11\_1325\_02 Sistema Qualità SINERGEA srl

**CERTIFICATO** n°

CSP 11/1325-02

DATA EMISSIONE

31/01/2012

Pagina 2 di 2

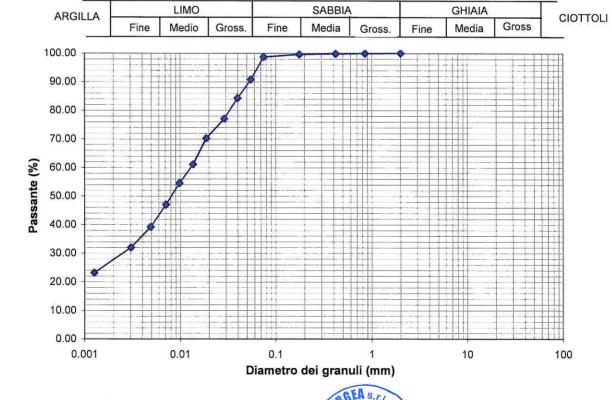
**ANALISI GRANULOMETRICA** 

**ASTM D 422** 

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri

**CAMPIONE:** 


CI1

**PROFONDITA':** 

1.10

1.60 m

| Α          | NALISI PER | VAGLIATUI    | RA         | ANALISI PER SE           | EDIMENTAZIONE            |
|------------|------------|--------------|------------|--------------------------|--------------------------|
| massa pro  | vino 29    | 97.08 g      | - W 3036   | massa provino            | 17.52 g                  |
| profondità | provino    | 1.48 ÷       | 1.60 m     | profondità provino       | 1.48 ÷ 1.60 m            |
| VAGLI      | APERTURA   | PASSANTE     | TRATTENUTO | $G_s$ 2                  | 2.745 - determinato      |
|            | mm         | % in peso    | % in peso  | Riferimento: Certificato | CSP 11/1325-04           |
| 1 1/2 "    | 38.1       | _            | -          | eseguita sul passante a  | l vaglio 200             |
| 1"         | 25.4       | -            |            | aerometro ASTM 15        | 51H                      |
| 3/4 "      | 19.05      | -            |            | DIAMETRO EQUIVALENTE     | % IN PESO PIU' FINE DI D |
| 3/8 "      | 9.525      |              | -          | D (mm)                   |                          |
| 5          | 4          | -            | -          | 0.05502                  | 90.82                    |
| 10         | 2          | 100.00       | 0.00       | 0.03986                  | 84.29                    |
| 20         | 0.85       | 99.94        | 0.06       | 0.02891                  | 77.10                    |
| 30         | 0.59       | <del>-</del> | -          | 0.01871                  | 70.24                    |
| 40         | 0.42       | 99.80        | 0.13       | 0.01362                  | 61.09                    |
| 50         | 0.297      | _            | -          | 0.00983                  | 54.56                    |
| 80         | 0.177      | 99.62        | 0.19       | 0.00710                  | 47.04                    |
| 100        | 0.149      | -            | -          | 0.00492                  | 39.20                    |
| 140        | 0.105      |              | -          | 0.00305                  | 32.02                    |
| 200        | 0.075      | 98.69        | 0.93       | 0.00126                  | 23.19                    |



DIRETTORE DI LABORATORIO

Sperimentatore

40057 Grandrolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP 11/1325-03

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1325 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP, AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI 1

Profondità:

1.10

1.60

m

**DATA PRELIEVO:** 

**PRELIEVO EFFETTUATO:** 

da ditta SOGEO

DATI FORNITI da:

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

#### IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE | DESCRIZIONE PROVA                            | n° prove | NORMATIVA DI RIFERIMENTO |
|--------|----------------------------------------------|----------|--------------------------|
| LIM    | Determinazione del limite liquido e plastico | 1        | CNR-UNI 10014            |

DATA INIZIO PROVA:

23/01/12

DATA TERMINE PROVA:

24/01/12

TIMBRO BLU SULL' ORIGINALE

**SPERIMENTATORE** Dott. Geol. Paolo CQLLI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA / 01909241208 - R.E.A. 398565

CPR\_008 (Rev. 1 del 04/05)

File: CPR\_008\_LIM.xls

Sistema Qualità SINERGEA srl

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA 🕬



srl

#### LABORATORIO GEOTECNICO

Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

**CERTIFICATO** n°

CSP 11/1325-03

**CAMPIONE:** 

DATA EMISSIONE

31/01/2012

Pagina 2 di 2

#### **DETERMINAZIONE DEI LIMITI DI CONSISTENZA**

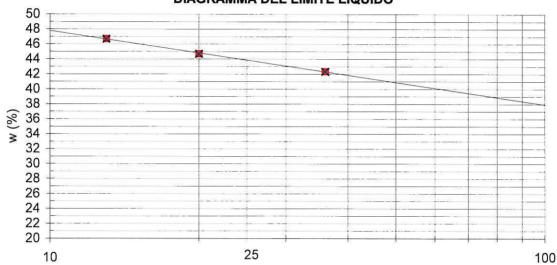
CNR-UNI 10014

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri

1

CI 1


PROFONDITA':

1.10

1.60 m

Profondità provino m 1.48-1.60 Determinazione n° 1 2 4 3 Massa tara 32.3787 44.2778 39.7773 g Numero colpi 13 36 20 Massa provino umido + tara 58.8513 70.5939 g 67.5512 Massa provino secco + tara 50.4239 62.7663 58.9714 g Contenuto in acqua % 46.7 42.3 44.7 Limite Liquido w % 44





#### NUMERO DI COLPI

| Determinazione                 | n° | 1       | 2       | 3 | 4  |
|--------------------------------|----|---------|---------|---|----|
| Massa tara                     | g  | 17.1441 | 17.3589 |   | -  |
| Massa provino umido + tara     | g  | 18.7127 | 19.0363 | - | -: |
| Massa provino secco + tara     | g  | 18.4322 | 18.7341 | - | -  |
| Contenuto in acqua             | %  | 21.8    | 22.0    | - | -  |
| Limite Plastico w <sub>P</sub> | %  |         | 22      |   | •  |

|                | Indice di Plasticità (w <sub>L</sub> - w <sub>P</sub> ) |
|----------------|---------------------------------------------------------|
| I <sub>P</sub> | 22                                                      |

DIRETTORE DI LABORATORIO

CONCESSIONE ON SETTORE "3" ON CIRC. 3491991STC CONCRIG. 349191STC CONCRIG. 3491991STC CONCRIG. 3491991STC CONCRIG. 349191STC CONCRIG. 34919TC CONCRIG. 34919TC CONCRIG. 34

Sperimentatore

40057 Granarolo del Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax ≠39-0516058949

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

**CERTIFICATO** n°:

CSP 11/1325-04

COMMESSA: 11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1325\_CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI 1

Profondità:

1.10

1.60

m

**DATA PRELIEVO:** 

**PRELIEVO EFFETTUATO:** 

da ditta SOGEO

DATI FORNITI da:

Dott. Geol. Albert Van Zutphen

**OSSERVAZIONI:** 

#### IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE DESCRIZIONE PROVA |                                             | n° prove | NORMATIVA DI RIFERIMENTO |
|--------------------------|---------------------------------------------|----------|--------------------------|
| PSG                      | Determinazione del peso specifico dei grani | 1        | CNR UNI 10013            |

DATA INIZIO PROVA:

<u>È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA</u>

24/01/12

DATA TERMINE PROVA:

26/01/12

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE.

IL DIRETTORE DEL LABORATORIO

Dott. Geol. Dario GRUNDLER Dott. Geol. Paolo COLLI

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR\_005 (Rev. 1 del 04/05)

File: CPR\_005\_PSG.xls



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

CERTIFICATO nº

CSP 11/1325-04

DATA EMISSIONE

31/01/2012

Pagina 2 di 2

DETERMINAZIONE DEL PESO SPECIFICO DEI GRANI (Gs)

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL

1

**CAMPIONE:** 

CI1

PROFONDITA':

1.10

1.60 m

NORMATIVA DI RIFERIMENTO: CNR UNI 10013

| PROFONDITA' PROVINO                                | da m           | 1.    | 48 a m   | 1.60        |
|----------------------------------------------------|----------------|-------|----------|-------------|
| DETERMINAZIONE n°                                  |                |       | 1        | 2           |
| Picnometro n°                                      |                | -     | 11       | 1           |
| Peso picnometro                                    | Р              | g     | 44.0246  | 47.0493     |
| Peso picnometro + campione                         | P+Cs           | g     | 65.2589  | 69.3877     |
| Peso campione secco                                | Cs             | g     | 21.2343  | 22.3384     |
| Peso picnometro + acqua                            | Pa             | g     | 148.8782 | 178.7018    |
| Peso picnometro + acqua + campione                 | Pt             | g     | 162.4017 | 192.8755    |
| Temperatura dell' acqua                            | Т              | °C    | 20       | 20          |
| Massa volumica H <sub>2</sub> 0 alla temperatura T | γw             | Mg/m³ | 0.99823  | 0.99823     |
| Peso specifico dei grani                           | G <sub>s</sub> | -     | 2.754    | 2.736       |
| Massa volumica della parte solida                  | γs             | Mg/m³ | 2.749    | 2.731       |
| Valore medio $\gamma_{s}$                          |                | Mg/m³ | 2.7      | <b>'</b> 40 |
| Valore medio G <sub>s</sub>                        |                | _     | 2.7      | 45          |

IL DIRETTORE DEL LABORATORIO

SPERMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax / 39-0516058949

CPR\_005 (Rev. 1 del 04/05)

File: CPR\_005\_PSG.xls

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO nº:

CSP 11/1325-05

**COMMESSA:** 

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1325 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI 1

Profondità:

1.10 1.60

m

**DATA PRELIEVO:** 

**PRELIEVO EFFETTUATO:** 

da ditta SOGEO

DATI FORNITI da:

É VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA 91

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

#### IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE DESCRIZIONE PROVA |                            | n° prove | NORMATIVA DI RIFERIMENTO |
|--------------------------|----------------------------|----------|--------------------------|
| TDR                      | Prova di taglio diretto CD | 3        | ASTM D 3080 / p.i.       |

DATA INIZIO PROVA:

17/01/12

DATA TERMINE PROVA:

23/01/12

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Geol. Paolo COLL

Il Direttore di Laboratorio Dott. Geol. Pario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA. 01909241208 - R.E.A. 398565

CPR\_013 (Rev. 1 del 04/05)

File: CPR\_013\_TDR.xls



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geolecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

**CERTIFICATO** 

CSP\_11/1325-05

DATA EMISSIONE:

31/01/2012

Pagina 2 di 4

PROVA DI TAGLIO DIRETTO C.D.

- ASTM D3080

**SONDAGGIO:** 

CAMPIONE: CI 1

PROFONDITA':

1.10

1.60 m

| Provino                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2              | 3                  | 4                |                     | LEGENDA                                                 |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|------------------|---------------------|---------------------------------------------------------|
| condizione                              | CR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CR             | CR                 | -                | CR                  | = come ricevuto                                         |
| Classe AGI                              | Q.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q.5.           | Q.5.               | -                | R T99               | = ricostruito AAHSTO T99                                |
| sezione                                 | quadrata                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | quadrata       | quadrata           | -                | R T180              | = ricostruito AAHSTO T180                               |
|                                         | 36 cm²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36 cm²         | 36 cm <sup>2</sup> | <b>=</b> 7       | z                   | = profondilà del provino                                |
| z (m)                                   | 1.56-1.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.53-1.56      | 1.50-1.53          | -                | h <sub>0</sub>      | = altezza iniziale provino                              |
| h <sub>o</sub> (mm)                     | 20.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.00          | 20.00              | =                | W <sub>i</sub>      | = contenuto in acqua iniziale                           |
| w <sub>i</sub> (%)                      | 20.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.81          | 19.60              |                  | Wf                  | = contenuto in acqua a fine prova                       |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                    |                  | γ                   | = massa volumica totale                                 |
| γ (Mg/m³)                               | 1.937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.946          | 1.917              | -                | γď                  | = massa volumica provino secco                          |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                    |                  | $\gamma_{s}$        | = massa volumica della parte solida                     |
| $\gamma_d$ (Mg/m <sup>3</sup> )         | 1.609                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.597          | 1.603              | 40               | γw                  | = massa volumica dell' acqua alla temperatura T°        |
| G <sub>s</sub> (-) <sub>determina</sub> | to 2.745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.745          | 2.745              | -                | G <sub>s</sub>      | = peso specifico dei grani                              |
| Rifer. Certificate                      | O CSP_11/1325-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CSP_11/1325-04 | CSP_11/1325-04     |                  | T                   | = temperatura dell' acqua                               |
| $\gamma_s$ (Mg/m <sup>3</sup> )         | 2.740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.740          | 2.740              | <b>=</b> 0       | е                   | = indice dei vuoti                                      |
| T (°C)                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20             | 20                 | -                | n                   | = porosità                                              |
| γ <sub>w</sub> (Mg/m³)                  | 0.99823                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.99823        | 0.99823            | -                | S                   | = grado di saturazione                                  |
| e (-)                                   | 0.703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.715          | 0.710              | <del>aa</del> li | $\sigma_{v}$        | = pressione verticale                                   |
| n (%)                                   | 41.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.70          | 41.51              | -                | $\tau_{max}$        | = massima lensione di laglio misurata                   |
| S (%)                                   | 79.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 83.55          | 75.65              |                  | $D_o \tau_{max}$    | = deformazione orizzontale alla massima tensione        |
| $\sigma_v$ (kN/m <sup>2</sup> )         | 98.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 196.1          | 392.3              | ₩//              | $\tau_{r}$          | = resistenza al taglio residua                          |
| τ <sub>max</sub> (kN/m²)                | war and the second seco | 112.1          | 201.5              | -                | D <sub>oc</sub>     | <ul> <li>deformazione orizzontale cumulativa</li> </ul> |
| $D_o \tau_{max}$ (mm)                   | 2.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.44           | 3.82               | ±4               | V <sub>p</sub>      | = velocità avanzamento apparecchiatura - picco          |
| h <sub>dc</sub> (mm)                    | 19.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.31          | 18.64              | =:               | V <sub>r</sub>      | = velocità avanzamento apparecchiatura - residuo        |
| t <sub>50</sub> (min)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              | 2.1                | -                | h <sub>dc</sub>     | = altezza provino a fine consolidazione                 |
| t <sub>f</sub> stim. (min)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -              | 105                | -                | t <sub>f</sub> stim | = tempo di rottura stimato                              |
| v <sub>p</sub> (mm/mir                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.005          | 0.005              | -                | t <sub>f</sub> eff. | = tempo di rottura effettivo                            |
| t <sub>f</sub> eff. (min)               | 412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 888            | 764                | -                |                     |                                                         |
| v <sub>r</sub> (mm/min                  | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( <del>-</del> | -                  | -                |                     |                                                         |
| $\tau_r$ (kN/m <sup>2</sup> )           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              | •                  | -                |                     |                                                         |
| D <sub>oc</sub> (mm)                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -              | -                  | -                |                     |                                                         |
| w <sub>f</sub> (%)                      | 25.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.90          | 20.45              | -                |                     |                                                         |
| Rifer. Certificate                      | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |                    |                  |                     |                                                         |

DIRETTORE DI LABORATORIO

SPERMENTATORE

40057 Granarolo dell'Émilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CSP\_11/1325-05 CERTIFICATO 31/01/2012 DATA EMISSIONE: Pagina 3 di 4 PROVA DI TAGLIO DIRETTO C.D. **ASTM D3080** SONDAGGIO: CAMPIONE: CI 1 PROFONDITA': 1.10 1.60 PICCO **RESIDUO** n 2 5 6 7 8 81 101 121 141 161 181 È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI Deformazione verticale (mm) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ■ provino 1 ▲ provino 2 provino 3 provino 1 △ provino 2 ◆ provino 3 240 230 220 210 200 190 Tensione orizzontale (kN/m²) 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 2 0 81 101 121 141 161 181 Deformazione orizzontale (mm) DIRETTORE DI LABORATORIO SPERMENTATORE 40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39/0516058949

**CERTIFICATO** CSP 11/1325-05 31/01/2012 DATA EMISSIONE: Pagina 4 di 4

PROVA DI TAGLIO DIRETTO C.D.

1

**ASTM D3080** 

**SONDAGGIO:** 

240

480

CAMPIONE:

CI<sub>1</sub>

**PROFONDITA':** 

1.10

1.60

DETERMINAZIONE DEI PARAMETRI DI CONSOLIDAZIONE (ASTM D2435-96) kPa

RELATIVI ALL' INTERVALLO DI PRESSIONE PROVINO n.

PROFONDITA'

da 196

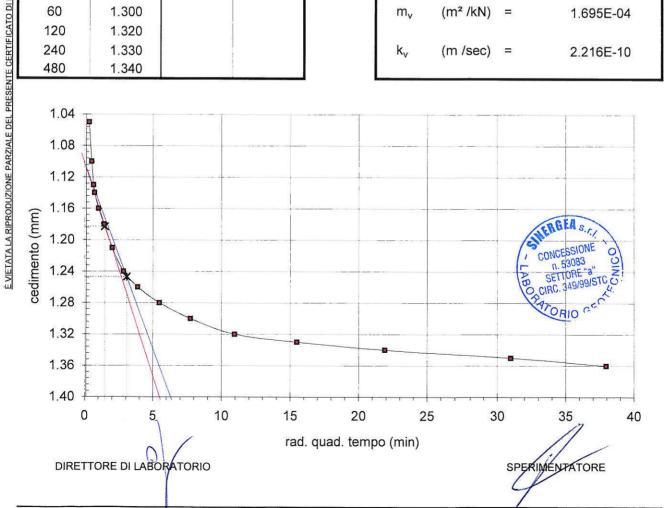
1.50

m

da

a

392 kPa


1.53 m

| VALORI MISURATI |                |                |                |  |  |  |  |
|-----------------|----------------|----------------|----------------|--|--|--|--|
| Tempo<br>(min)  | Cedim.<br>(mm) | Tempo<br>(min) | Cedim.<br>(mm) |  |  |  |  |
| 0.1             | 1.050          | 960            | 1.350          |  |  |  |  |
| 0.25            | 1.100          | 1440           | 1.360          |  |  |  |  |
| 0.4             | 1.130          | 1800           | _              |  |  |  |  |
| 0.5             | 1.140          | 2880           | n <del>e</del> |  |  |  |  |
| 1               | 1.160          | 3600           | ( <del>-</del> |  |  |  |  |
| 2               | 1.180          | 5760           | -              |  |  |  |  |
| 4               | 1.210          |                |                |  |  |  |  |
| 8               | 1.240          |                |                |  |  |  |  |
| 15              | 1.260          |                |                |  |  |  |  |
| 30              | 1.280          |                |                |  |  |  |  |
| 60              | 1.300          |                |                |  |  |  |  |
| 120             | 1.320          |                |                |  |  |  |  |

1.330

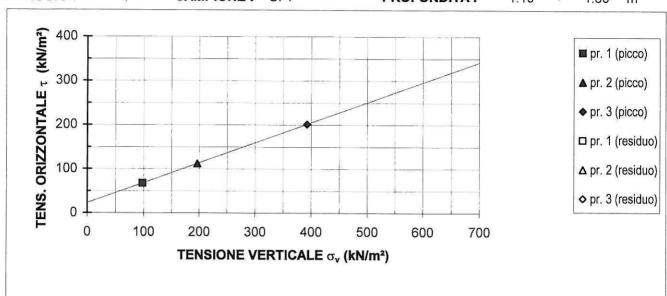
1.340

|                                                                          | VALOF                          | RI C | ALCOLATI                     |  |
|--------------------------------------------------------------------------|--------------------------------|------|------------------------------|--|
| t <sub>90</sub><br>d <sub>90</sub><br>t <sub>50</sub><br>d <sub>50</sub> | (min)<br>(mm)<br>(min)<br>(mm) | =    | 9.36<br>1.25<br>2.10<br>1.18 |  |
| Tempo                                                                    |                                | ngin | nento della rottura          |  |
| t <sub>f</sub>                                                           | (min)                          | =    | 105                          |  |
| C <sub>v</sub>                                                           | (m² /sec)                      | =    | 1.336E-07                    |  |
| m <sub>v</sub>                                                           | (m² /kN)                       | =    | 1.695E-04                    |  |
| k <sub>v</sub>                                                           | (m /sec)                       | =    | 2.216E-10                    |  |



40057 Granarolo de l'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

### PROVA DI TAGLIO DIRETTO CD (ASTM D 3080) - INTERPOLAZIONE DATI


COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA Pagina 1 di 1

LOCALITA': FAENZA

NOTE:

CANTIERE: VIA MONTE SANT' ANDREA, 4

SONDAGGIO: 1 CAMPIONE: CI 1 PROFONDITA': 1.10 ÷ 1.60 m



|                         | Risultati della regressione lineare |             |         |   |                |         |
|-------------------------|-------------------------------------|-------------|---------|---|----------------|---------|
|                         |                                     | Valori di p | icco    | , | √alori re      | esidui  |
| Intercetta sull' asse y | =                                   | 23.10       | kN/m²   | = | 4 <del>2</del> | kN/m²   |
| inclinazione retta      | =                                   | 24.45       | ° sess. | = | 77-            | ° sess. |

L'interpretazione sopra riportata è frutto di una regressione lineare operata sulle tensioni massime determinate in laboratorio: la scelta dei parametri della resistenza al taglio più opportuni rispetto alle finalità prefissate spetta al Progettista o Professionista incaricato.

| - 1 | 30000000000000000000000000000000000000 |
|-----|----------------------------------------|
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 | i e                                    |
| - 1 |                                        |
| - 1 | i                                      |
| - 1 |                                        |
| - 1 | i - 1                                  |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| - 1 |                                        |
| -1  |                                        |
|     |                                        |



40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

### **RIEPILOGO CERTIFICATI DI PROVA**

DATA DI EMISSIONE: 31/01/2012

| COMMESSA N°:      | 11/239 VERBALE DI ACCETTAZIONE N°: 11/1326 CSP          |
|-------------------|---------------------------------------------------------|
|                   | DATA ACCETTAZIONE: 21/12/2011                           |
| RICHIEDENTE:      | Dott. Geol. Albert Van Zutphen                          |
| CONSEGNATARIO:    | Personale tecnico della ditta SOGEO                     |
| COMMITTENTE:      | GRAN FRUTTA ZANI COOP. AGRICOLA                         |
| LOCALITA':        | FAENZA                                                  |
| CANTIERE:         | VIA MONTE SANT'ANDREA, 4                                |
| SONDAGGIO:        | 1 CAMPIONE: CI 2                                        |
| PROFONDITA' (m):  | 5.50-6.10 CONTENITORE /PRESTAZIONE: Fustella di acciaio |
| PRELIEVO/PROVA ES |                                                         |
|                   |                                                         |
|                   | DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE:           |
| OSSERVAZIONI:     |                                                         |

#### PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

| OSSERVA         | DATA ESECUZIONE PROVE FS o PRELIEVO CAMPIONE:                                             |         |                                  |                         |  |  |  |  |
|-----------------|-------------------------------------------------------------------------------------------|---------|----------------------------------|-------------------------|--|--|--|--|
|                 | PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIO                                              | NE o FU | ORI STAZIONE                     |                         |  |  |  |  |
| CODICE<br>PROVA | DESCRIZIONE SINTETICA                                                                     | Q.tà    | NORME DI<br>RIFERIMENTO          | CERTIFICATO<br>DI PROVA |  |  |  |  |
| DSC01a          | Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica | 1       | ASTM D 2488-84                   | CSP11/1326-0            |  |  |  |  |
| GRT04           | Granulometria combinata per vagliatura e sedimentazione                                   | 1       | ASTM D 422                       | CSP11/1326-0            |  |  |  |  |
| LIM01           | Determinazione limiti: LL e LP                                                            | 1       | CNR UNI 10014                    | CSP11/1326-0            |  |  |  |  |
| PSG01           | Peso specifico dei grani                                                                  | 1       | CNR UNI 10013                    | CSP11/1326-0            |  |  |  |  |
| EDO02           | Prova di consolidazione edometrica IL: 9 incrementi carico, 4 scarico                     | 1       | ASTM D 2435                      | CSP11/1326-0            |  |  |  |  |
| EDO04           | Restituzione della curva cedimenti-tempo e calcolo di cv-kv-mv                            | 1       | ASTM D 2435                      | CSP11/1326-0            |  |  |  |  |
|                 |                                                                                           |         | 40                               |                         |  |  |  |  |
|                 |                                                                                           |         |                                  |                         |  |  |  |  |
|                 |                                                                                           |         | ER SKOOLOG HUMBER OF THE SKOOLOG |                         |  |  |  |  |
|                 |                                                                                           |         |                                  |                         |  |  |  |  |
|                 |                                                                                           |         |                                  |                         |  |  |  |  |

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

#### CERTIFICATO n°:

CSP 11/1326-01

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1326\_CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

**COMMITTENTE:** GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI2

Profondità:

5.50 6.10

m

**DATA PRELIEVO:** 

**PRELIEVO EFFETTUATO:** 

da ditta SOGEO

DATI FORNITI da:

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA

#### IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE | DESCRIZIONE PROVA                   | n° prove | NORMATIVA DI RIFERIMENTO |
|--------|-------------------------------------|----------|--------------------------|
| DSC    | Descrizione geotecnica del campione | 1        | ASTM D 2488-84           |

DATA INIZIO PROVA:

16/01/2012

DATA TERMINE PROVA:

16/01/2012

TIMBRO BLU SULL' ORIGINALE

**SPERIMENTATORE** Dott. Geol. Paolo COI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA 01909241208 - R.E.A. 398565

CPR\_001 (Rev. 1 del 04/05)

File: CPR\_001\_DSC.xls



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

CERTIFICATO n°

CSP\_11/1326-01

DATA EMISSIONE

31/01/2012

Pagina 2 di 3

**DESCRIZIONE GEOTECNICA DEL CAMPIONE** 

- ASTM D2488

**SONDAGGIO:** 

1

**CAMPIONE:** 

CI2

PROFONDITA':

5.50

6.10 m

Data descrizione

16/01/12

Forma del campione

: cilindrica

Qualità del campione (AGI):

Q.5.da 5.90m Dimensioni del campione

: L = 52 cm;  $\phi = 8.4 \text{ cm}$ 

| Profondità |       | Descrizione                                                                                                                                                                                                                                                     |  |  |  |
|------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| da m       | a m   |                                                                                                                                                                                                                                                                 |  |  |  |
| 5.58       | 5.90  | Campione rimaneggiato.                                                                                                                                                                                                                                          |  |  |  |
| 5.90       | 6.10  | A con L / L con A, di colore bruno oliva chiaro ( HUE 2.5Y 5/4) passante a grigio (HUE 2.5Y 5/1). Presenza di veli e puntinature nerastre e brunastre, veli calcarei, calcinelli, piccoli frustoli e mica.  Debole / Nessuna reazione a contatto con HCl al 5%. |  |  |  |
| EGENDA     | G = 0 | Argilla/Argilloso L = Limo/Limoso S = Sabbia/Sabbioso T = Torba/Torboso Chiaia/Ghiaioso F = Fine M = Medio C = Grossolano ori si fa riferimento a: "Munsell Soil Color Charts" (sigla tra parentesi)                                                            |  |  |  |

= parallelo all'asse del campione

| SCHEMA DEL CAMPIONE            |  |  |                         | P.P.                                                            | T.V.  | PROVE ESEGUITE                   |
|--------------------------------|--|--|-------------------------|-----------------------------------------------------------------|-------|----------------------------------|
| Prof. No<br>(m)                |  |  | Profondità reale<br>(m) |                                                                 | (MPa) |                                  |
| SCH<br>Prof. No<br>(m)<br>5.50 |  |  | 5.58                    |                                                                 |       |                                  |
|                                |  |  | 5.90                    | 0.26 \( \psi \) 0.18 \( \psi \) 0.16 \( \psi \) 0.16 \( \psi \) |       | CNW, MVT, LIM, GRT, PSG, EDO, cv |
| 6.10                           |  |  | 6.10                    |                                                                 |       | THE GEAS.                        |

DIRETTORE DI LABORATORIO

SPERIMENTATORE

40057 Granarolo del Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax ≠3/9-0516058949



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

**CERTIFICATO** n°

CSP\_11/1326-01

DATA EMISSIONE

31/01/2012

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO nº:

CAMPIONE: CI 2

PROFONDITA':

5.50

6.10

m



DIRETTORE DI LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia, v/a Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39/0516058949

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

**CERTIFICATO** n°:

CSP 11/1326-02

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1326 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA' :

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

DATA DI ACCETTAZIONE :

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI2

Profondità:

5.50

6.10

m

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGFO

DATI FORNITI da:

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

# IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE | DESCRIZIONE PROVA      | n° prove | NORMATIVA DI RIFERIMENTO |
|--------|------------------------|----------|--------------------------|
| GRA    | Analisi granulometrica | 1        | ASTM D 422               |

DATA INIZIO PROVA:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA

17/01/2012

DATA TERMINE PROVA:

26/01/2012

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE

Dott. Geol. Paolo COLL

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR\_007 (Rev. 1 del 04/05)

File: CSP\_11\_1326\_02

CERTIFICATO n° CSP 11/1326-02 DATA EMISSIONE 31/01/2012
Pagina 2 di 2

ANALISI GRANULOMETRICA - ASTM D 422

SONDAGGIO: 1 CAMPIONE: CI 2 PROFONDITA': 5.50 ÷ 6.10 m

| A          | NALISI PER | VAGLIATUI | RA                                        | ANALISI PER SE           | EDIMENTAZIONE            |
|------------|------------|-----------|-------------------------------------------|--------------------------|--------------------------|
| massa prov | vino 27    | 70.36 g   | to 10 10 10 10 10 10 10 10 10 10 10 10 10 | massa provino 4          | 16.53 g                  |
| profondità | provino 6  | 5.00 ÷    | 3.10 m                                    | profondità provino       | 6.00 ÷ 6.10 m            |
| VAGLI      | APERTURA   | PASSANTE  | TRATTENUTO                                | $G_s$ 2                  | 2.774 - determinato      |
|            | mm         | % in peso | % in peso                                 | Riferimento: Certificato | CSP 11/1326-04           |
| 1 1/2 "    | 38.1       | -         | -                                         | eseguita sul passante a  | l vaglio 200             |
| 1"         | 25.4       | -         | -                                         | aerometro ASTM 15        | 51H                      |
| 3/4 "      | 19.05      | -         | -                                         | DIAMETRO EQUIVALENTE     | % IN PESO PIU' FINE DI D |
| 3/8 "      | 9.525      | -         | -                                         | D (mm)                   | 0.000                    |
| 5          | 4          | 100.00    | 0.00                                      | 0.05354                  | 94.59                    |
| 10         | 2          | 99.94     | 0.06                                      | 0.03815                  | 92.65                    |
| 20         | 0.85       | 99.92     | 0.03                                      | 0.02725                  | 90.07                    |
| 30         | 0.59       |           | -                                         | 0.01770                  | 82.97                    |
| 40         | 0.42       | 99.90     | 0.02                                      | 0.01209                  | 79.41                    |
| 50         | 0.297      | -         |                                           | 0.00907                  | 76.19                    |
| 80         | 0.177      | 99.56     | 0.33                                      | 0.00655                  | 69.73                    |
| 100        | 0.149      |           | -                                         | 0.00454                  | 63.27                    |
| 140        | 0.105      | 96.67     | 2.89                                      | 0.00286                  | 54.23                    |
| 200        | 0.075      | 96.06     | 0.61                                      | 0.00117                  | 43.90                    |

LIMO SABBIA **GHIAIA ARGILLA** CIOTTOLI Gross Fine Medio Gross. Fine Media Media Gross. Fine 100.00 90.00 80.00 70.00 Passante (%) 60.00 50.00 40.00 30.00 20.00 10.00

DIRETTORE DI LABORATORIO

0.01

0.00

Specimentatore

10

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax /39-0516058949

Diametro dei granuli (mm)

CPR\_007 (Rev. 1 del 04/05)

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL

Sistema Qualità SINERGEA srl

100

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO nº:

CSP 11/1326-03

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1326 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

**COMMITTENTE:** GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

DATA DI ACCETTAZIONE :

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI2

Profondità:

5.50

6.10

m

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da:

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

# IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE | DESCRIZIONE PROVA                            | n° prove | NORMATIVA DI RIFERIMENTO |  |
|--------|----------------------------------------------|----------|--------------------------|--|
| LIM    | Determinazione del limite liquido e plastico | 1        | CNR-UNI 10014            |  |

DATA INIZIO PROVA:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA

23/01/12

DATA TERMINE PROVA:

24/01/12

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Geol. Paolo COL

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA / 01909241208 - R.E.A. 398565

CPR\_008 (Rev. 1 del 04/05)

File: CPR\_008\_LIM.xls

**CERTIFICATO** n°

CSP 11/1326-03

DATA EMISSIONE

31/01/2012

Pagina 2 di 2

**DETERMINAZIONE DEI LIMITI DI CONSISTENZA** 

**CNR-UNI 10014** 

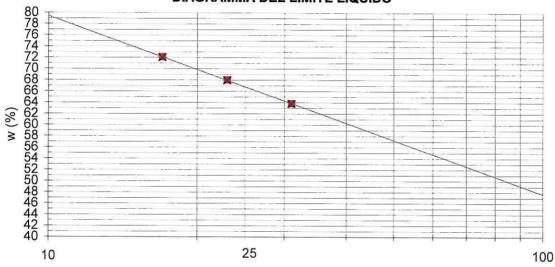
SONDAGGIO:

<u>È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri</u>

1

**CAMPIONE:** 

CI2


PROFONDITA':

5.50

6.10 m

| Profondità provino         | m  |         | 6.00    | -610    |                                         |
|----------------------------|----|---------|---------|---------|-----------------------------------------|
| Determinazione             | n° | 1       | 2       | 3       | 4                                       |
| Massa tara                 | g  | 31.0810 | 47.8122 | 40.5341 | -                                       |
| Numero colpi               | -  | 17      | 23      | 31      | -                                       |
| Massa provino umido + tara | g  | 55.8391 | 77.6599 | 68.7200 | -                                       |
| Massa provino secco + tara | g  | 45.4686 | 65.5817 | 57.7416 | 2                                       |
| Contenuto in acqua         | %  | 72.1    | 68.0    | 63.8    | •                                       |
| Limite Liquido w           | %  |         | 6       | 7       | - 1 - 1   1   1   1   1   1   1   1   1 |

## **DIAGRAMMA DEL LIMITE LIQUIDO**



## NUMERO DI COLPI

| Determinazione                 | n° | 1       | 2       | 3              | 4        |
|--------------------------------|----|---------|---------|----------------|----------|
| Massa tara                     | g  | 17.1958 | 17.3298 | -              | -        |
| Massa provino umido + tara     | g  | 19.0243 | 18.768  | × <del>-</del> | -        |
| Massa provino secco + tara     | g  | 18.6406 | 18.4656 | · ·            | <b>-</b> |
| Contenuto in acqua             | %  | 26.6    | 26.6    |                | =        |
| Limite Plastico w <sub>P</sub> | %  | 27      |         |                |          |

|                | Indice di Plasticità (w <sub>L</sub> - w <sub>P</sub> ) |     |
|----------------|---------------------------------------------------------|-----|
| l <sub>P</sub> | 40                                                      | 112 |

DIRETTORE DI LABORATORIO

SETTORE "a"

CORC. 349/99/STC

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

Sperimentatore

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP 11/1326-04

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1326 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP, AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI2

Profondità:

5.50

6.10

m

**DATA PRELIEVO:** 

**PRELIEVO EFFETTUATO:** 

da ditta SOGEO

DATI FORNITI da:

Dott. Geol. Albert Van Zutphen

**OSSERVAZIONI:** 

## IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE DESCRIZIONE PROVA |                                             | n° prove | NORMATIVA DI RIFERIMENTO |  |
|--------------------------|---------------------------------------------|----------|--------------------------|--|
| PSG                      | Determinazione del peso specifico dei grani | 1 1      | CNR UNI 10013            |  |

DATA INIZIO PROVA:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA

24/01/12

DATA TERMINE PROVA:

26/01/12

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Geol. Paolo CØLLI IL DIRETTORE DEL LABORATORIO Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA 01909241208 - R.E.A. 398565

CPR\_005 (Rev. 1 del 04/05)

File: CPR 005 PSG.xls



I IARC

LABORATORIO GEOTECNICO

Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

**CERTIFICATO** n°

CSP 11/1326-04

DATA EMISSIONE

31/01/2012

Pagina 2 di 2

DETERMINAZIONE DEL PESO SPECIFICO DEI GRANI (Gs)

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri

1

**CAMPIONE:** 

CI 2

PROFONDITA':

5.50

6.10 m

| NORMATIVA | DI RIFERIMENTO . | CND HMI 10012 |
|-----------|------------------|---------------|

| PROFONDITA' PROVINO                   | da m  | 6.    | 00 am    | 6.10     |  |
|---------------------------------------|-------|-------|----------|----------|--|
| DETERMINAZIONE n°                     |       |       | 1        | 2        |  |
| Picnometro n°                         |       | -     | 10       | 6        |  |
| Peso picnometro                       | Р     | g     | 50.3463  | 42.2698  |  |
| Peso picnometro + campione            | P+Cs  | g     | 71.7307  | 68.6919  |  |
| Peso campione secco                   | Cs    | g     | 21.3844  | 26.4221  |  |
| Peso picnometro + acqua               | Pa    | g     | 151.3374 | 174.6219 |  |
| Peso picnometro + acqua + campione    | Pt    | g     | 165.0053 | 191.5280 |  |
| Temperatura dell' acqua               | Т     | °C    | 20       | 20       |  |
| Massa volumica H₂0 alla temperatura T | γW    | Mg/m³ | 0.99823  | 0.99823  |  |
| Peso specifico dei grani              | $G_s$ | -     | 2.771    | 2.777    |  |
| Massa volumica della parte solida     | γs    | Mg/m³ | 2.766    | 2.772    |  |
| Valore medio $\gamma_{ m s}$          |       | Mg/m³ | 2.769    |          |  |
| Valore medio G <sub>s</sub>           |       | _     | 2.7      | 74       |  |

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

CPR\_005 (Rev. 1 del 04/05)

File: CPR\_005\_PSG.xls

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

**CERTIFICATO n°:** 

CSP 11/1326-05

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1326 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

DATA DI ACCETTAZIONE :

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

DESCRIZIONE CONTENITORE DEL CAMPIONE :

Fustella di acciaio

Sondaggio:

Campione:

CI2 Profondità: 5.50

6.10

m

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da:

<u>È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI, </u>

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

# IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE | DESCRIZIONE PROVA                  | n° prove | NORMATIVA DI RIFERIMENTO |
|--------|------------------------------------|----------|--------------------------|
| EDO    | Prova di consolidazione edometrica | 1        | ASTM D 2435              |
| CV     | Determinazione di cv-kv-mv         | 1        | ASTM D 2435              |
|        |                                    |          |                          |

DATA INIZIO PROVA:

16/01/12

DATA TERMINE PROVA:

31/01/12

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Geol. Paolo COLK

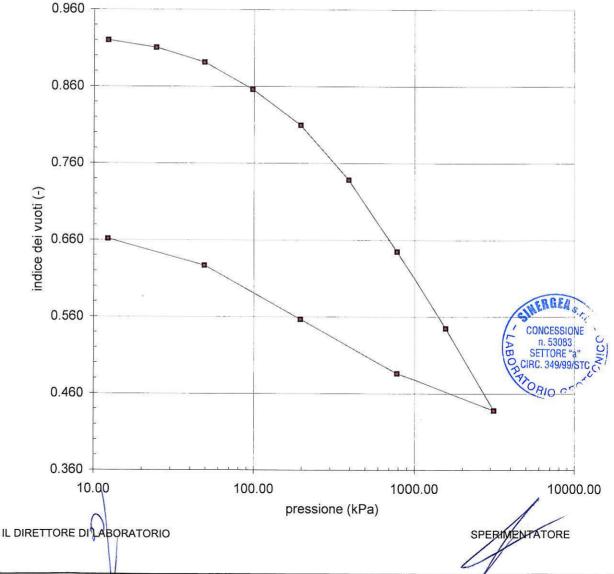
Il Direttore di paboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR\_015 (Rev. 1 del 04/05)

File: CPR\_015\_EDO kls

 CERTIFICATO
 CSP 11/1326-05
 DATA EMISSIONE
 31/01/2012


 Pagina 2 di 6

PROVA DI CONSOLIDAZIONE EDOMETRICA I.L.

SONDAGGIO: 1 CAMPIONE: CI 2 PROFONDITA': 5.50 ÷ 6.10 m

NORMATIVA DI RIFERIMENTO: ASTM D2435

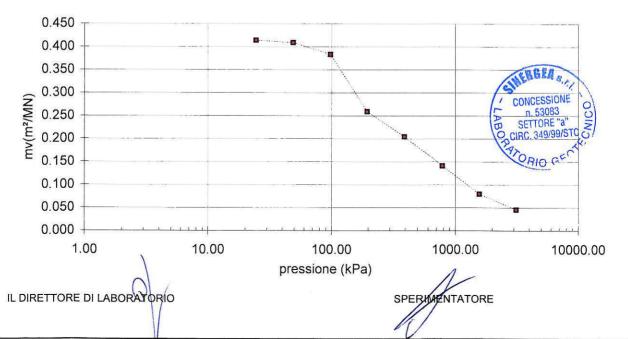
|                                          | CAR     | ATTERIST                   | ICHE [       | EL PROVINO            |                |          |      |       |   |
|------------------------------------------|---------|----------------------------|--------------|-----------------------|----------------|----------|------|-------|---|
| CONDIZIONI DEL PROVI                     | NO      | : indistur                 | bato         | PROFONDITA            | ': 6.          | 05       | ÷    | 6.10  | m |
|                                          |         |                            | Inizi        | o prova               | 10             | Fine     | prov | /a    |   |
| Altezza provino                          | (mm)    | Ho                         | =            | 20.00                 | $H_{f}$        | =        |      | 17.27 |   |
| Diametro provino                         | (mm)    | Do                         | =            | 71.36                 | $D_{f}$        | <b>=</b> |      | 71.36 |   |
| Contenuto in acqua<br>Riferimento:       | (%)     | - W <sub>0</sub>           | =            | 32.24                 | w <sub>f</sub> | =        |      | 23.79 |   |
| Peso di volume totale<br>Riferimento:    | (kN/m³) | - γ                        | =            | 18.67                 | γr<br>-        | =        |      | 20.23 |   |
| Peso di volume secco                     | (kN/m³) | γ <sub>d</sub>             | =            | 14.12                 | γdf            | =        |      | 16.35 |   |
| Indice dei vuoti                         | (-)     | e <sub>o</sub>             | =            | 0.924                 | e <sub>f</sub> | =        |      | 0.661 |   |
| Grado di saturazione                     | (%)     | S <sub>0</sub>             | =            | 96.63                 | $S_f$          | =        |      | 99.59 |   |
| Peso specifico dei grani<br>Riferimento: | (-)     | G <sub>s</sub><br>Certific | =<br>ato CSF | 2.774<br>P 11/1326-04 | determ         | inato    | -    |       |   |



40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SII.

CERTIFICATO CSP 11/1326-05 DATA EMISSIONE 31/01/2012


Pagina 3 di 6

PROVA DI CONSOLIDAZIONE EDOMETRICA I.L.

SONDAGGIO: 1 CAMPIONE: CI 2 PROFONDITA': 5.50 ÷ 6.10 m

NORMATIVA DI RIFERIMENTO: ASTM D2435

| CONDIZ | IONI DEL PROVII | VO : inc                                 | listurbato |                |                |                |
|--------|-----------------|------------------------------------------|------------|----------------|----------------|----------------|
|        | = 20.00         | mm                                       | D          | = 71.36        | mm             | *********      |
|        | = 0.924         | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |            | W-1/4          |                | -              |
|        | oressione       | ΔΗ                                       | е          | m <sub>v</sub> | C <sub>V</sub> | k <sub>v</sub> |
|        | verticale       |                                          |            | 057.           | 500            | 150            |
| n°     | kPa             | mm                                       | -          | m²/MN          | m²/s           | m/s            |
| 1      | 12              | 0.041                                    | 0.920      | <u> </u>       | -              | *              |
| 2      | 25              | 0.142                                    | 0.910      | 0.414          | -              | -              |
| 3      | 49              | 0.340                                    | 0.891      | 0.409          | =              | -              |
| 4      | 98              | 0.706                                    | 0.856      | 0.383          | 8.22E-08       | 3.08E-10       |
| 5      | 196             | 1.190                                    | 0.809      | 0.259          | -              |                |
| 6      | 392             | 1.929                                    | 0.738      | 0.204          | -              | =              |
| 7      | 785             | 2.901                                    | 0.645      | 0.141          | -              | -              |
| 8      | 1569            | 3.939                                    | 0.545      | 0.080          | -              | -              |
| 9      | 3138            | 5.052                                    | 0.438      | 0.046          | -              | -              |
| 10     | 785             | 4.551                                    | 0.486      |                |                | _              |
| 11     | 196             | 3.820                                    | 0.556      |                | -              | -              |
| 12     | 49              | 3.088                                    | 0.627      | 7 <u>4</u>     | -              |                |
| 13     | 12              | 2.728                                    | 0.661      | -              | -              | _              |
| 14     | -               | -                                        | -          | _              |                | -              |
| 15     | -               | -                                        | -          |                | _              |                |
| 16     | -               | -                                        | -          | -              |                | _              |
| 17     | -               | -                                        | 3/200-000  | . <del>-</del> |                | -              |
| 18     | _               |                                          |            |                | _              | ·              |
| 19     | -               | _                                        | -          | :              | -              | =              |
| 20     | -               | -                                        |            | =              |                |                |
| 21     | -               |                                          | -          | -              | -              | <u> </u>       |
| 22     | -               | _                                        | -          |                | _              | -              |
| 23     | -               | -                                        |            |                | ×              | _              |
| 24     | -               | -                                        | -          | -              | -              |                |



40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE CERTIFICATO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA 361

Srl

Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

A STECNICO 23/01/12 1569 Cedimento - FAC 2.995 3.012 3.047 3.082 3.199 3.283 3.406 3.559 3.714 3.829 3.896 3.925 3.939 (mm) 3.131 2.98 3.02 CI ine prova: CI 2 nizio prova Tempo 785 4320 1440 (min) 0.25 1920 2880 0.4 0.5 240 480 096 0.1 120 5 30 9 2 4 8 SPERIMENTATORE 20/01/12 Cedimento 785 23/01/12 2.019 1.983 2.047 2.052 2.083 2.117 2.165 2.313 2.572 2.832 2.879 2.888 (mm) 2.231 2.784 2.901 CAMPIONE: 2.431 2.701 2.857 2.87 PROVA DI CONSOLIDAZIONE EDOMETRICA I.L. - Cedimenti rilevati nel tempo per ogni intervallo di carico/scarico nizio prova: Tempo Fine prova: 392 (min) 0.25 1440 1920 2880 4320 240 480 0.1 0.4 0.5 120 960 5 30 9 N 4  $\infty$ 19/01/12 Cedimento 392 20/01/12 1.313 1.336 1.359 1.433 1.559 1.749 1.903 (mm) 1.301 1.327 1.653 1.825 1.929 1.39 1.491 1.874 1.921 Inizio prova: Tempo 196 ine prova: (min) 0.25 1217 1920 2880 4320 0.5 0.1 0.4 5 120 240 480 960 30 9 2  $\infty$ 4 SONDAGGIO INTERVALLO DI CARICO/SCARICO: da - a (kPa) 18/01/12 Cedimento 196 19/01/12 0.845 0.798 0.838 0.918 0.959 1.004 1.056 1.168 (mm) 0.827 0.864 1.102 1.133 1.154 1.177 0.887 1.19 Inizio prova: Tempo ine prova: 1440 4320 (min) 0.25 1920 2880 0.5 86 480 960 0.1 0.4 120 240 15 39 9 2 4  $\infty$ 31/01/2012 17/01/12 Cedimento 86 18/01/12 0.486 0.437 0.502 0.542 0.693 0.706 (mm) 0.48 0.634 0.688 0.47 0.52 0.57 99.0 0.677 0.701 0.6 Inizio prova: Tempo Fine prova: 49 (min) 0.25 1440 1920 2880 4320 240 480 960 0.1 0.4 0.5 120 15 30 9 DATA EMISSIONE 2 4 ω 16/01/12 Cedimento 17/01/12 49 0.206 0.235 0.246 0.255 0.318 0.228 0.266 0.323 0.326 (mm) 0.237 0.287 0.277 0.311 0.34 0.3 nizio prova: Tempo ine prova: (min) 4320 1440 2880 0.25 1920 25 0.5 240 480 960 0.1 0.4 120 5 30 9 2 4  $\infty$ 16/01/12 Cedimento CSP 11/1326-05 25 16/01/12 0.118 0.108 0.122 0.124 0.128 0.133 0.136 0.138 0.142 0.142 (mm) 0.14 0.141 IL DIRETTORE DI LABORATØRIO Inizio prova: ine prova: Tempo 4320 1440 (min) 1920 2880 12 0.25 0.1 0.4 0.5 120 240 480 960 15 30 9 2 4  $\infty$ 16/01/12 Cedimento 12 16/01/12 0.036 0.036 0.039 0.042 (mm) 0.03 0.037 0.041 0.04 0.041 CERTIFICATO nizio prova: Tempo ine prova: 1440 1920 4320 2880 (min) 0.25 0.5 240 480 960 120 0.1 0.4 0 15 30 9 2 œ 4

File: CPR\_015\_EDO.xls

CPR\_015 (Rev. 1 del 04/05)

EKA S.r.

Srl

Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

DATA EMISSIONE

CSP 11/1326-05

CERTIFICATO

31/01/2012

INTERVALLO DI CARICO/SCARICO: da - a (kPa)

SONDAGGIO:

CAMPIONE

2

0

PROVA DI CONSOLIDAZIONE EDOMETRICA I.L. - Cedimenti rilevati nel tempo per ogni intervallo di carico/scarico

Cedimento

Cedimento

Cedimento

Cedimento

Cedimento

nizio prova Tempo

izio prova: Tempo

nizio prova: Tempo

30/01/12

nizio prova: Tempo

27/01/12

Inizio prova: Tempo

26/01/12 Cedimento

Inizio prova: Tempo

25/01/12 Cedimento

Inizio prova: 3138

24/01/12 3138

izio prova: 1569

Tempo

Cedimento

Tempo

(mm)

(min)

0.25

0.25

0.25

3.075 3.083

0.25

3.79

0.25

0.25

0.25

4.023

0.25

0.4 0.5

4.069

0.4

4.079 4.109

0.5

0.1

3.809

0.1

4.523 4.489

0.1

5.042 4.995 4.935 4.929 4.913 4.893

0.1

3.983

0.1

0.1

0.1

0.4

0.1

0.5

0.5

0.5

0.5

0.5

4.478 4.465 4.448 4.426 4.395 4.356

0.5

2

3.067

2

3.765

7

2 4  $\infty$ 

2 4  $\infty$ 

4.144

2 4 8

4.867 4.831

3.061

4

3.751 3.73

4  $\infty$ 

3.07

3.776

0.4

3.074 3.072

0.4

3.785 3.784

0.4

4.482

0.4

0.4

N

4

0

0

0

0

0

12

12

49

49

196

196

785

785

ine prova: 1920 2880 4320

CHERGEAS.A.

SETTING. JRE"

ATO RIO

2880

4320

1440

1440

1440 1920 2880

2.728

1440 1920 2880

3.138 3.123

1440 1920 2703

3.82

1440

4.551

1440 1920

5.052

1440

1920 2880

1920

2.77

3.174

3.835

960

4.555

5.035

3.881

480

4.564

120 240 480 960

120 240 480 960

120 240 480 960

2.97

120 240 480 096

3.511

120 240 480 960

4.093 3.972

120 240

120 240 480 096

> 240 480 960

120

4.207

3.599

3.661

30 9

4.294

30 9

4.731 4.667 4.611 4.577

2.918

3.396

3.271

2.847

5

15

15 30 9

 $\infty$ 4

> 3.055 3.045 3.029 3.005

> ω 5 30 9

> > 3.703

15

15

4.789

15 30 9

4.338

15 30 9

4.46 4.621 4.791 4.923 5.001

4.256 4.191

8

4

30

9

30 9

 $\infty$ 

1920

**NOESSIONE** 

100

ine prova

ENTATORE

SPERIM

ine prova: 4320

31/01/12

Fine prova:

30/01/12

Fine prova:

27/01/12

Fine prova:

26/01/12

ine prova:

25/01/12

Fine prova:

4320

4320

2880

IL DIRETTORE DI LABORATORIO

4320

2880

4320

3.088

4231

3.

Sistema Qualità SINERGEA srl

File: CPR\_015\_EDO.xls

CPR\_015 (Rev. 1 del 04/05)

**CERTIFICATO** n°

CSP 11/1326-05

DATA EMISSIONE

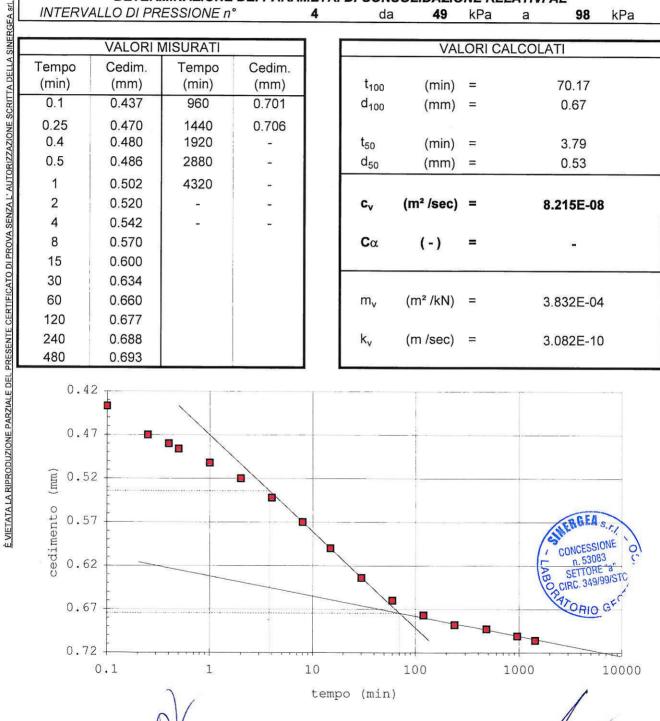
31/01/2012

PROVA DI CONSOLIDAZIONE EDOMETRICA I.L.

**SONDAGGIO:** 

1 **CAMPIONE:**  CI2 PROFONDITA':

5.50


6.10 m

NORMATIVA DI RIFERIMENTO: ASTM D2435

| DETERMINAZIONE DEI P       | ARAMETRI I | DI CONSO | LIDAZIO | ONE RE | LATIVI . | AL |     |
|----------------------------|------------|----------|---------|--------|----------|----|-----|
| INTERVALLO DI PRESSIONE n° | 4          | da       | 49      | kPa    | а        | 98 | kPa |

|        |                | VALORIA        | MISURATI       |                |
|--------|----------------|----------------|----------------|----------------|
| 110000 | Tempo<br>(min) | Cedim.<br>(mm) | Tempo<br>(min) | Cedim.<br>(mm) |
|        | 0.1            | 0.437          | 960            | 0.701          |
|        | 0.25<br>0.4    | 0.470<br>0.480 | 1440<br>1920   | 0.706          |
|        | 0.5            | 0.486          | 2880           | -              |
|        | 1              | 0.502          | 4320           | n=             |
|        | 2              | 0.520          | -              | -              |
|        | 4              | 0.542          | -              | -              |
|        | 8              | 0.570          |                |                |
|        | 15             | 0.600          |                |                |
|        | 30             | 0.634          |                |                |
|        | 60             | 0.660          |                |                |
|        | 120            | 0.677          |                |                |
|        | 240            | 0.688          |                |                |
|        | 480            | 0.693          |                |                |

|                  | VAL       | OR | CALCOLATI |
|------------------|-----------|----|-----------|
|                  |           |    |           |
| t <sub>100</sub> | (min)     | =  | 70.17     |
| d <sub>100</sub> | (mm)      | =  | 0.67      |
|                  |           |    |           |
| t <sub>50</sub>  | (min)     |    | 3.79      |
| d <sub>50</sub>  | (mm)      |    | 0.53      |
|                  |           |    |           |
| c <sub>v</sub>   | (m² /sec) | =  | 8.215E-08 |
| Cα               | (-)       | =  | -         |
| m <sub>v</sub>   | (m² /kN)  | =  | 3.832E-04 |
| k <sub>v</sub>   | (m /sec)  | =  | 3.082E-10 |



IL DIRETTORE DI LABORATORIO

SPERIMENT

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949



E' VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVASENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

# **RIEPILOGO CERTIFICATI DI PROVA**

DATA DI EMISSIONE: 31/01/2012

| COMMESSA N°:     | 11/239      |                                         | VERBAI                                  | LE DI ACCETTAZIONE N°:                  | 11        | /1327                               | CSP                                     |                           |           |
|------------------|-------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------|-------------------------------------|-----------------------------------------|---------------------------|-----------|
|                  |             |                                         |                                         | DATA ACCETTAZIO                         | ONE:      | 21/12                               | /2011                                   |                           |           |
| RICHIEDENTE:     | Dott. Geol. | Albert Van Zuti                         | phen                                    |                                         |           |                                     |                                         |                           |           |
| CONSEGNATARIO:   |             |                                         |                                         |                                         |           |                                     |                                         |                           |           |
| COMMITTENTE:     | GRAN FRU    | JTTA ZANI CO                            | OP. AGRICOLA                            |                                         |           | *****************                   |                                         | *****************         |           |
| LOCALITA':       | FAENZA      |                                         |                                         |                                         |           |                                     | ******                                  |                           |           |
| CANTIERE:        | VIA MONT    | E SANT'ANDR                             | EA, 4                                   |                                         |           | ****************                    | *************************************** |                           |           |
| SONDAGGIO:       | 1           | CAMPIONE: C                             | 1.3                                     |                                         |           | ***********                         | ********************                    |                           | ********* |
| PROFONDITA' (m): | 12.00-12.6  | 0                                       | CONTENITORE                             | PRESTAZIONE: Fustel                     | la di a   | acciaio                             |                                         | ******************        |           |
| PRELIEVO/PROVA E | SEGUITO DA: | ditta SOGEO                             | *************************************** | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           |                                     | *******************                     | ************************* |           |
|                  |             | *************************************** | ****                                    |                                         |           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | *****************                       | *****                     | .,        |
|                  |             |                                         | DAT                                     | A ESECUZIONE PROVE F                    | S o PR    | ELIEVO CA                           | MPIONE:                                 |                           | ********* |
| OSSERVAZIONI:    |             | *************************************** | *****************************           |                                         | ********* | **************                      | ***************                         | *****************         |           |

## PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

| CODICE<br>PROVA | DESCRIZIONE SINTETICA                                                                     | Q.tà | NORME DI<br>RIFERIMENTO | CERTIFICATO<br>DI PROVA |
|-----------------|-------------------------------------------------------------------------------------------|------|-------------------------|-------------------------|
| DSC01a          | Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica | 1    | ASTM D 2488-84          | CSP11/1327-01           |
| GRT04           | Granulometria combinata per vagliatura e sedimentazione                                   | 1    | ASTM D 422              | CSP11/1327-02           |
| LIM01           | Determinazione limiti: LL e LP                                                            | 1    | CNR UNI 10014           | CSP11/1327-03           |
| PSG01           | Peso specifico dei grani                                                                  | 1    | CNR UNI 10013           | CSP11/1327-04           |
| CNW01           | Contenuto in acqua                                                                        | 1    | CNR UNI 10008           | CSP11/1327-05           |
| MVT01           | Peso di volume con fustella tarata                                                        | 1    | p.i.                    | CSP11/1327-06           |
| HILLER          |                                                                                           |      |                         |                         |
|                 |                                                                                           |      | 510-1-0                 |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           |      |                         |                         |
| W               |                                                                                           |      |                         |                         |
|                 |                                                                                           |      | ***                     |                         |
|                 |                                                                                           |      |                         |                         |
|                 |                                                                                           | +    |                         |                         |

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

**CERTIFICATO** n°:

CSP 11/1327-01

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1327 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

**COMMITTENTE:** GRAN FRUTTA ZANI COOP, AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI3

Profondità:

6.10

5.50

m

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da :

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

# IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE DESCRIZIONE PROVA |                                     | n° prove | NORMATIVA DI RIFERIMENTO |  |
|--------------------------|-------------------------------------|----------|--------------------------|--|
| DSC                      | Descrizione geotecnica del campione | 1        | ASTM D 2488-84           |  |

DATA INIZIO PROVA:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA

17/01/2012

DATA TERMINE PROVA:

17/01/2012

TIMBRO BLU SULL' ORIGINALE

**SPERIMENTATORE** Dott. Geol. Paolo COLL

Il Direttore di Laboratorio Dott. Geof. Darjo GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA. / 01909241208 - R.E.A. 398565

CPR\_001 (Rev. 1 del 04/05)

File: CPR\_001\_DSC.xls

CSP 11/1327-01 CERTIFICATO n° DATA EMISSIONE 31/01/2012 Pagina 2 di 3

**DESCRIZIONE GEOTECNICA DEL CAMPIONE ASTM D2488** 

**SONDAGGIO:** 1 **CAMPIONE:** CI3 PROFONDITA': 5.50 6.10 m

Data descrizione 17/01/12 Forma del campione cilindrica

Qualità del campione (AGI): Q.5.da 12.16m Dimensioni del campione : L = 55 cm;  $\phi = 8.4 \text{ cm}$ 

| Profondità |       | Descrizione                                                                                                                                                                         |
|------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| da m       | a m   |                                                                                                                                                                                     |
| 12.05      | 12.16 | Campione rimaneggiato.                                                                                                                                                              |
| 12.16      | 12.27 | SL / S con L                                                                                                                                                                        |
| 12.27      | 12.36 | LA                                                                                                                                                                                  |
| 12.36      | 12.48 | SL/S con L                                                                                                                                                                          |
| 12.48      | 12.60 | LA / LA debolmente S                                                                                                                                                                |
|            |       | Campione di colore oliva (HUE 5Y 5/4) e oliva pallido (HUE 5y 6/4). Presenza di veli e puntinature nerastre e brunastre e mica. Da Media A Forte reazione a contatto con HCl al 5%. |
| EGENDA     | G = 0 | argilla/Argilloso L = Limo/Limoso S = Sabbia/Sabbioso T = Torba/Torboso Shiaia/Ghiaioso F = Fine M = Medio C = Grossolano                                                           |
|            |       | ori si fa riferimento a: "Munsell Soil Color Charts" (sigla tra parentesi) erpendicolare all'asse del campione = parallelo all'asse del campione                                    |

| PPO                                                    | SCHEMA DE          | L CAMPIONE           | P.P.   | T.V.  | PROVE ESEGUITE          |
|--------------------------------------------------------|--------------------|----------------------|--------|-------|-------------------------|
| NTE RA                                                 | Prof. Nominale (m) | Profondità reale (m) | (MPa)  | (MPa) | THOSE ESECUTE           |
| ESE                                                    | 12.00              | (111)                |        |       |                         |
| È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPOF |                    | 12.05                |        |       |                         |
| ZIONE PARZ                                             |                    | 12.16                |        |       |                         |
| DDUZ                                                   |                    |                      | 0.16 ⊥ |       |                         |
| A RIPR                                                 |                    | 12.27                | 0.13 _ |       |                         |
| ITAL                                                   |                    |                      | 0.18 _ |       | CNW, MVT, LIM, GRT, PSG |
| È VIETA                                                |                    | 12.36                | 0.17 ⊥ |       |                         |
|                                                        |                    | 12.00                | 0.16 _ |       |                         |
| RECEIVED AND A                                         |                    |                      | 0.14 ⊥ |       |                         |
|                                                        |                    | 12.48                | 0.22 ⊥ |       |                         |
|                                                        |                    |                      | 0.18 _ |       | WEBEA S. P.             |
| 3                                                      | 12.60              | 12.60                |        |       | CONCESSIONE O           |

DIRETTORE DI LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Em/lia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax/+39-0516058949



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

**CERTIFICATO** n°

CSP\_11/1327-01

DATA EMISSIONE

31/01/2012

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO nº:

CAMPIONE: CI 3

**PROFONDITA':** 

5.50

6.10

m



DIRETTORE DI LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax + 39-0516058949

CPR\_001 (Rev. 1 del 04/05)

File: CPR\_001\_DSC.xls



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geolecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

CERTIFICATO n°:

CSP 11/1327-02

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1327 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

DATA DI ACCETTAZIONE :

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI3

Profondità:

12.00 -12.60

m

**DATA PRELIEVO:** 

**PRELIEVO EFFETTUATO:** 

da ditta SOGEO

DATI FORNITI da:

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

# IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE DESCRIZIONE PROVA |                        | n° prove | NORMATIVA DI RIFERIMENTO |  |
|--------------------------|------------------------|----------|--------------------------|--|
| GRA                      | Analisi granulometrica | 1        | ASTM D 422               |  |

DATA INIZIO PROVA:

<u>È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA</u>

18/01/2012

DATA TERMINE PROVA:

26/01/2012

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE, Dott. Geol. Paolo CØLLI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR\_007 (Rev. 1 del 04/05)

File: CSP\_11\_1327\_02

 CERTIFICATO n°
 CSP 11/1327-02
 DATA EMISSIONE
 31/01/2012

 Pagina 2 di 2

**ANALISI GRANULOMETRICA** 

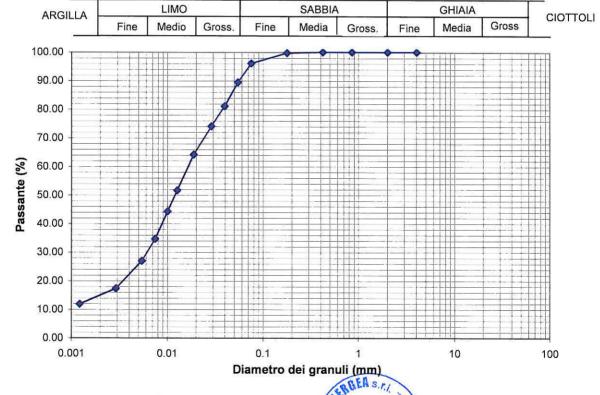
**ASTM D 422** 

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri.

1

**CAMPIONE:** 


CI3

PROFONDITA':

12.00

12.60 m

| А            | NALISI PER | VAGLIATU  | RA         | ANALISI PER             | SEDIMENTAZIONE              |
|--------------|------------|-----------|------------|-------------------------|-----------------------------|
| massa prov   | vino 29    | 98.43 g   |            | massa provino           | 46.80 g                     |
| profondità p | provino 1  | 2.27 ÷ 1  | 12.36 m    | profondità provino      | 12.27 ÷ 12.36 m             |
| VAGLI        | APERTURA   | PASSANTE  | TRATTENUTO | $G_s$                   | 2.780 - determinato         |
| 70.18.50     | mm         | % in peso | % in peso  | Riferimento: Certifical | to CSP 11/1327-04           |
| 1 1/2 "      | 38.1       | -         | -          | eseguita sul passante   | al vaglio 200               |
| 1 "          | 25.4       | -         | _          | aerometro ASTM          | 151H                        |
| 3/4 "        | 19.05      |           |            | DIAMETRO EQUIVALEN      | TE % IN PESO PIU' FINE DI D |
| 3/8 "        | 9.525      |           | -          | D (mm)                  |                             |
| 5            | 4          | 100.00    | 0.00       | 0.05441                 | 89.44                       |
| 10           | 2          | 100.00    | 0.00       | 0.03970                 | 81.10                       |
| 20           | 0.85       | 100.00    | 0.00       | 0.02879                 | 74.05                       |
| 30           | 0.59       | -         | -          | 0.01882                 | 64.11                       |
| 40           | 0.42       | 100.00    | 0.00       | 0.01263                 | 51.61                       |
| 50           | 0.297      | -         | -          | 0.01000                 | 44.24                       |
| 80           | 0.177      | 99.72     | 0.28       | 0.00745                 | 34.62                       |
| 100          | 0.149      | -         |            | 0.00542                 | 26.93                       |
| 140          | 0.105      |           |            | 0.00290                 | 17.31                       |
| 200          | 0.075      | 96.06     | 3.66       | 0.00122                 | 11.86                       |



DIRETTORE DI LABORATORIO

Sperimentatore

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO nº:

CSP 11/1327-03

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1327 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

DATA DI ACCETTAZIONE :

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI3

Profondità:

12.00

12.60

m

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da:

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

# IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE DESCRIZIONE PROVA |                                              | n° prove | NORMATIVA DI RIFERIMENTO |  |  |
|--------------------------|----------------------------------------------|----------|--------------------------|--|--|
| LIM                      | Determinazione del limite liquido e plastico | 1        | CNR-UNI 10014            |  |  |

DATA INIZIO PROVA:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI

23/01/12

DATA TERMINE PROVA:

24/01/12

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Geol. Paolo COLLI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA : 01909241208 - R.E.A. 398565

CPR\_008 (Rev. 1 del 04/05)

File: CPR\_008\_LIM.xls

CERTIFICATO nº

CSP 11/1327-03

DATA EMISSIONE

31/01/2012

Pagina 2 di 2

**DETERMINAZIONE DEI LIMITI DI CONSISTENZA** 

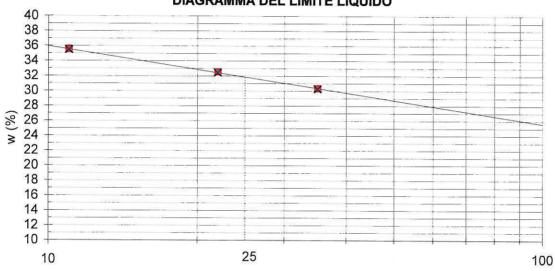
**CNR-UNI 10014** 

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL

CAMPIONE:

CI3


PROFONDITA':

12.00 ÷

12.60 m

| Profondità provino            | m  | -21     | 12.27   | -12.36  | -24 890  |
|-------------------------------|----|---------|---------|---------|----------|
| Determinazione                | n° | 1       | 2       | 3       | 4        |
| Massa tara                    | g  | 34.0018 | 44.7799 | 42.8950 | <b>.</b> |
| Numero colpi                  | -  | 11      | 22      | 35      | -        |
| Massa provino umido + tara    | g  | 61.4017 | 72.0259 | 70.2153 | -        |
| Massa provino secco + tara    | g  | 54.2227 | 65.3504 | 63.8621 | _        |
| Contenuto in acqua            | %  | 35.5    | 32.5    | 30.3    | -        |
| Limite Liquido w <sub>L</sub> | %  |         | 3       | 2       |          |

## DIAGRAMMA DEL LIMITE LIQUIDO



## NUMERO DI COLPI

| Determinazione                 | n° | 1       | 2       | 3 | 4 |  |
|--------------------------------|----|---------|---------|---|---|--|
| Massa tara                     | g  | 17.2385 | 17.3415 | - | - |  |
| Massa provino umido + tara     | g  | 19.1172 | 19.0768 | - | - |  |
| Massa provino secco + tara     | g  | 18.7924 | 18.7730 | - | = |  |
| Contenuto in acqua             | %  | 20.9    | 21.2    |   | - |  |
| Limite Plastico w <sub>P</sub> | %  | 21      |         |   |   |  |

| Indice di Plasticità (w <sub>L</sub> - w <sub>P</sub> ) |    |  |  |  |  |  |
|---------------------------------------------------------|----|--|--|--|--|--|
| l <sub>P</sub>                                          | 11 |  |  |  |  |  |

DIRETTORE DI LABORATORIO

CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCESSIONE OF CONCES

Sperimentatore

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

File: CPR\_008\_LIM.xls

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

**CERTIFICATO** n°:

CSP 11/1327-04

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1327 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA' :

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA. 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

1

Fustella di acciaio

Sondaggio:

Campione:

CI3

Profondità:

12.00 - 12.60

m

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da:

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

## IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE DESCRIZIONE PROVA |                                             | n° prove | NORMATIVA DI RIFERIMENTO |  |
|--------------------------|---------------------------------------------|----------|--------------------------|--|
| PSG                      | Determinazione del peso specifico dei grani | 1        | CNR UNI 10013            |  |

DATA INIZIO PROVA:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA

24/01/12

DATA TERMINE PROVA:

26/01/12

TIMBRO BLU SULL' ORIGINALE

**SPERIMENTATORE** Dott. Geol. Paolo COLLI IL DIRETTORE DEL LABORATORIO Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA //01909241208 - R.E.A. 398565

CPR\_005 (Rev. 1 del 04/05)

File: CPR\_005\_PSG.xls



srl

#### LABORATORIO GEOTECNICO

Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

**CERTIFICATO** n°

CSP 11/1327-04

DATA EMISSIONE

31/01/2012

Pagina 2 di 2

# DETERMINAZIONE DEL PESO SPECIFICO DEI GRANI (Gs)

SONDAGGIO:

<u>È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINFRGEA sri.</u>

1

CAMPIONE:

CI3

PROFONDITA':

12.00

12.60 m

NORMATIVA DI RIFERIMENTO: CNR UNI 10013

| PROFONDITA' PR | ONIVO |
|----------------|-------|
|----------------|-------|

da m

6.00

a m

6.10

| Valore medio G <sub>s</sub>                        |        | -        | 2.7      | <b>'80</b> |
|----------------------------------------------------|--------|----------|----------|------------|
| Valore medio $\gamma_{ m s}$                       |        | Mg/m³    | 2.7      | 75         |
| Massa volumica della parte solida                  | γS     | Mg/m³    | 2.767    | 2.783      |
| Peso specifico dei grani                           | $G_s$  | -        | 2.772    | 2.788      |
| Massa volumica H <sub>2</sub> 0 alla temperatura T | γW     | Mg/m³    | 0.99823  | 0.99823    |
| Temperatura dell' acqua                            | Т      | °C       | 20       | 20         |
| Peso picnometro + acqua + campione                 | Pt     | g        | 174.1279 | 164.4650   |
| Peso picnometro + acqua                            | Pa     | g        | 157.7449 | 148.7946   |
| Peso campione secco                                | Cs     | g        | 25.6276  | 24.4363    |
| Peso picnometro + campione                         | P+Cs   | g        | 76.8899  | 76.3665    |
| Peso picnometro                                    | P      | g        | 51.2623  | 51.9302    |
| Picnometro n°                                      |        | ı        | 19       | 3          |
| DETERMINAZIONE n°                                  |        |          | 1        | 2          |
| WOOD SONE SALES                                    | ua III | <u> </u> | 00 a iii | 0.10       |

IL DIRETTORE DEL LABORATORIO

SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

File: CPR\_005\_PSG.xls

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

| CE | DT  | CA" | TO | 0     |     |
|----|-----|-----|----|-------|-----|
| UE | R I | LA  |    | 4 100 | 3.5 |

CSP 11/1327-05

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1327 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

TORIZZAZIONE SCRITTA DELLA SINERGEA sri

PRESENTE RAPPORTO DI PROVA SENZA

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

DESCRIZIONE CONTENITORE DEL CAMPIONE :

1

Fustella di acciaio

Sondaggio:

Campione:

CI3

Profondità:

12.00 - 12.60

m

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da: Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

# IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE     | DESCRIZIO  | ONE PROVA        |             | n° prove | NORMATIVA DI RIFERIMENTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |            |
|------------|------------|------------------|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|------------|
| CNW        | Contenuto  | in acqua         |             | 100      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 08        |            |
| DATA INIZI | O PROVA:   | 17/01/2          | 012         |          | DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TA TERMI | NE PROVA: | 18/01/2012 |
| DETERMIN   | AZIONE     | (n°)             | 1           | 2        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 4         | 5          |
| Profe      | ondità     | (m)              | 12.27-12.36 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |            |
| T          | ara        | (n°)             | 1           | 50       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |            |
| massa      | a tara (t) | (g)              | 52.48       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |            |
| Cı         | ı + t      | (g)              | 126.79      |          | 100 mm = 100 |          |           |            |
|            |            | / <sub>~</sub> \ | 400.00      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |            |

| DETERMINAZIONE   | (n°)  | 1           | 2         | 3 | 4   | 5            |
|------------------|-------|-------------|-----------|---|-----|--------------|
| Profondità       | (m)   | 12.27-12.36 |           |   |     |              |
| Tara             | (n°)  | 1           |           |   |     |              |
| massa tara (t)   | (g)   | 52.48       |           |   |     | <del></del>  |
| Cu + t           | (g)   | 126.79      |           |   | *** |              |
| Cs+t             | (g)   | 109.08      |           |   |     |              |
| w                | (%)   | 31.3        | -         | - | -   | <del>-</del> |
| Prova di riferin | nento |             | What is a |   |     | 161          |

Cu

= massa provino umido

Cs

massa provino secco contenuto in acqua

TIMBRO BLU SULL' ORIGINALE

PERIMENTATORE

Dott. Geol. Paolo COLL

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA

01909241208 - R.E.A. 398565

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 1

|    | -  | AA | 70 | 0 |  |
|----|----|----|----|---|--|
| RT | -1 |    | 10 | n |  |
|    |    |    |    |   |  |

CSP 11/1327-06

**COMMESSA:** 

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1327 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

**CONSEGNATARIO:** 

Personale tecnico della ditta SOGEO

COMMITTENTE:

GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA' :

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

1

DESCRIZIONE PROVA

Fustella di acciaio

n° prove

Sondaggio :

Campione:

CI3

Profondità:

12.00

NORMATIVA DI RIFERIMENTO

12.60

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

CODICE

MVT

Dott. Geol. Albert Van Zutphen

**OSSERVAZIONI:** 

## IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| MVT N          | lassa volum | nica con fuste | lla tarata  |                       | 77.00 VIII VIII VIII VIII VIII VIII VIII V | 1 p.i POP_0 | 03         |
|----------------|-------------|----------------|-------------|-----------------------|--------------------------------------------|-------------|------------|
| DATA INIZIO PE | ROVA:       | 17/01/2012     |             |                       | DATA TERM                                  | INE PROVA:  | 17/01/2012 |
| PROVA          | n°          | (-)            | 1           | 2                     | 3                                          | 4           | 5          |
| Profondi       | tà          | (m)            | 12.27-12.36 | di <del>95-0</del> 5- |                                            |             |            |
| Fustella       | n°          | (-)            | -1          |                       |                                            |             |            |
| Massa fuste    | ella (t)    | (g)            | 53.66       |                       |                                            |             |            |
| V              |             | (cm³)          | 40          | -                     | -                                          | <b>L</b> 0  |            |
| Cu + t         |             | (g)            | 129.33      |                       |                                            |             |            |
| γ              |             | (Mg/m³)        | 1.892       | -                     | € <b></b>                                  |             | <u> </u>   |
| Rif            | ferimento   |                |             |                       |                                            |             |            |

Cu = massa provino umido Volume fustella massa volumica

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Geol. Paolo COLLI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA: / 01909241208 - R.E.A. 398565

CPR\_003 (Rev. 2 del 06/09)

File : CPR\_003\_MV/7.xls

40050 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

# RAPPORTO DI PROVA nº:

RSP 11/0906-01

**COMMESSA:** 11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/0906 SP

**RICHIEDENTE:** 

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

1

Fustella di acciaio

Sondaggio:

Campione:

CI3

Profondità:

12.00

12.60

m

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da:

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

# IL PRESENTE RAPPORTO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE | DESCRIZIONE PROVA                   | n° prove | NORMATIVA DI RIFERIMENTO |
|--------|-------------------------------------|----------|--------------------------|
| CFV    | Caratteristiche fisico-volumetriche | 1 1      | Norme applicabili        |

0 Prima emissione **REV** DESCRIZIONE

SPERIMENTATORE Dott. Geol. Paolo OLI

Il Direttore di Laboratorio Dott. Geo. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA/:

01909241208 - R.E.A. 398565

È VIETATA LA RIPRODUZIONE PARZIALE O TOTALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri

1

RAPPORTO DI PROVA

RSP\_11/0906-01

**DATA EMISSIONE** 

31/01/2012

Pag 2 di 2

# **DETERMINAZIONE DELLE CARATTERISTICHE FISICO - VOLUMETRICHE**

SONDAGGIO:

**CAMPIONE:** 

CI3

PROFONDITA':

12.00 ÷ 12.60 m

| PROFONDITA' PROVINO                                         | da m             | 12.           | .27                  | 12.36 |    |
|-------------------------------------------------------------|------------------|---------------|----------------------|-------|----|
| Umidità naturale<br>CPR di riferimento: CSP 11/1327-05      | w                | (%)           |                      | 31.   | 29 |
| Massa volumica totale CPR di riferimento: CSP 11/1327-06    | γ                | (Mg/m³)       |                      | 1.8   | 92 |
| Massa volumica secca                                        | γd               | (Mg/m³)       |                      | 1.4   | 41 |
| Peso specifico dei grani CPR di riferimento: CSP 11/1327-04 | $G_s$            | : <del></del> | 2.780                |       |    |
| Massa volumica della parte solida                           | γs               | (Mg/m³)       | <sup>3</sup> ) 2.769 |       |    |
| Temperatura dell' acqua                                     | T °0             |               |                      |       | 9  |
| Massa volumica H <sub>2</sub> 0 alla temperatura T          | γw               | Mg/m³         | 0.99597              |       |    |
| Indice dei vuoti                                            | е                | ij            | 0.92                 |       |    |
| Porosità                                                    | rosità n (%) 48. |               |                      |       | .0 |
| Grado di saturazione                                        | S                | (%)           |                      | 94.   | 01 |
| Massa volumica del terreno saturo                           | γsat             | (Mg/m³)       | /m³) 1.926           |       |    |

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA sri.



E'VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVASENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini 6/6 - Tel. +39 051768869 - Fax +39 0516058949 - e-mail: info@sinergea.com

# **RIEPILOGO CERTIFICATI DI PROVA**

DATA DI EMISSIONE: 31/01/2012

| COMMESSA N°:      | 11/239      |                    | VERBALE                                 | E DI ACCETTAZ                           | IONE N°:                                | 11/1328             | CSP         |                                         |               |
|-------------------|-------------|--------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|---------------------|-------------|-----------------------------------------|---------------|
|                   |             |                    |                                         | DATA AC                                 | CETTAZIONE                              | : 21/12             | 2/2011      |                                         |               |
| RICHIEDENTE:      | Dott. Geol. | Albert Van Zutphe  | an                                      | ******************************          | *************************************** |                     |             |                                         | ************* |
| CONSEGNATARIO:    |             | ecnico della ditta |                                         |                                         |                                         |                     |             |                                         |               |
| COMMITTENTE:      |             | TTA ZANI COOP      |                                         |                                         |                                         |                     |             |                                         |               |
| LOCALITA':        | FAENZA      |                    |                                         | *****************                       | **************                          | ******************* | *********** | *************************************** | ***********   |
| CANTIERE:         | VIA MONTE   | SANT'ANDREA        | , 4                                     | ********************                    | *************************************** |                     | ······      | ************                            | **********    |
| SONDAGGIO:        | 1           | CAMPIONE: CI 4     | *************************************** | *************************************** | *****************                       |                     |             |                                         |               |
| PROFONDITA' (m):  |             |                    |                                         |                                         |                                         |                     |             |                                         |               |
| PRELIEVO/PROVA ES |             | ditta SOGEO        |                                         |                                         |                                         |                     |             |                                         |               |
|                   |             | ·····              |                                         |                                         |                                         |                     |             |                                         |               |
|                   |             |                    |                                         | ESECUZIONE                              |                                         |                     |             | ************                            | ************* |
| OSSERVAZIONI:     |             |                    | ******************************          | ********************                    |                                         | *************       |             |                                         |               |

# PROVE e/o DETERMINAZIONI ESEGUITE SUL CAMPIONE o FUORI STAZIONE

| CODICE<br>PROVA | DESCRIZIONE SINTETICA                                                                     | Q.tà | NORME DI<br>RIFERIMENTO                | CERTIFICATO<br>DI PROVA |
|-----------------|-------------------------------------------------------------------------------------------|------|----------------------------------------|-------------------------|
| DSC01a          | Estrazione, descrizione geotecnica di campioni da fustelle e rappresentazione fotografica | 1    | ASTM D 2488-84                         | CSP11/1328-01           |
| GRT04           | Granulometria combinata per vagliatura e sedimentazione                                   | 1    | ASTM D 422                             | CSP11/1328-02           |
| LIM01           | Determinazione limiti: LL e LP                                                            | 1    | CNR UNI 10014                          | CSP11/1328-03           |
| PSG01           | Peso specifico dei grani                                                                  | 1    | CNR UNI 10013                          | CSP11/1328-04           |
| CNW01           | Contenuto in acqua                                                                        | 1    | CNR UNI 10008                          | CSP11/1328-05           |
| MVT01           | Peso di volume con fustella tarata                                                        | 1    | p.i.                                   | CSP11/1328-06           |
|                 |                                                                                           |      |                                        |                         |
|                 |                                                                                           |      |                                        |                         |
|                 |                                                                                           |      |                                        |                         |
|                 |                                                                                           |      |                                        |                         |
|                 |                                                                                           |      |                                        |                         |
|                 |                                                                                           |      |                                        |                         |
|                 |                                                                                           |      |                                        |                         |
|                 |                                                                                           |      | 10-7877-10- p.26- 10-1/1/18890 - / 10- |                         |
|                 |                                                                                           |      |                                        |                         |
|                 |                                                                                           |      |                                        |                         |
|                 |                                                                                           |      |                                        |                         |
|                 |                                                                                           |      |                                        |                         |
|                 |                                                                                           |      |                                        |                         |
|                 |                                                                                           |      | 1                                      |                         |

per SINE RGEA sri



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 3

**CERTIFICATO** n°:

CSP 11/1328-01

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1328 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP, AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI 4

Profondità:

16.50 - 17.10

m

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da:

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

# IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE | DESCRIZIONE PROVA                   | n° prove | NORMATIVA DI RIFERIMENTO |
|--------|-------------------------------------|----------|--------------------------|
| DSC    | Descrizione geotecnica del campione | 1        | ASTM D 2488-84           |

DATA INIZIO PROVA:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA

17/01/2012

DATA TERMINE PROVA:

17/01/2012

TIMBRO BLU SULL' ORIGINALE

PERIMENTATORE

Dott. Geol. Paolo COL

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43,350 i.v. - Reg. Imp. BO, C.F. e P. IV. : 01909241208 - R.E.A. 398565

CPR 001 (Rev. 1 del 04/05)

File: CPR\_001\_DSC.xls



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

CERTIFICATO n° CSP\_11/1328-01 31/01/2012 DATA EMISSIONE Pagina 2 di 3

DESCRIZIONE GEOTECNICA DEL CAMPIONE - ASTM D2488

SONDAGGIO: **CAMPIONE:** CI4 PROFONDITA': 16.50 ÷ 17.10 m

Data descrizione : 17/01/12 Forma del campione : cilindrica

Qualità del campione (AGI): Q.5.da 16.88m Dimensioni del campione : L = 41 cm;  $\phi = 8,4$  cm

| ſ                                                  | Profc | ndità | Descrizione                                                                                                                                                                                                         |
|----------------------------------------------------|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 딉                                                  | da m  | a m   |                                                                                                                                                                                                                     |
| 3GEA s                                             | 16.69 | 16.88 | Campione rimaneggiato.                                                                                                                                                                                              |
| SENZA L' AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL | 16.88 | 17.10 | L A di colore grigio (D1fG 5/N).  Presenza di veli e puntinature nerastre e brunastre e mica.  Intervallo sabbioso che si sviluppa lungo tutta la verticale del campione.  Media reazione a contatto con HCl al 5%. |
| SENZA L' AUT                                       |       |       |                                                                                                                                                                                                                     |

LEGENDA : A = Argilla/Argilloso
G = Ghiaia/Ghiaioso

L = Limo/Limoso

S = Sabbia/Sabbioso T = Torba/Torboso

F = Fine M = Medio C = Grossolano Per i colori si fa riferimento a: "Munsell Soil Color Charts" (sigla tra parentesi)

perpendicolare all'asse del campiono

| OR.                                                    |         |         |             |           | 'asse del ca      | mpione           | = parallelo all'asse del campione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------|---------|---------|-------------|-----------|-------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APP                                                    | SCF     | IEMA DE | L CAMPI     | ONE       | P.P.              | T.V.             | PROVE ESEGUITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ER                                                     | Prof. N | ominale | Profond     | ità reale | (MPa)             | (MPa)            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EN                                                     | (m)     |         |             | (m)       |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| RES                                                    | 16.50   |         |             |           |                   | 01-02-0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L P                                                    |         | 9       |             |           |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EDE                                                    |         |         |             |           |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IAL                                                    |         |         |             |           |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ARZ                                                    |         |         |             |           |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NE F                                                   |         |         |             |           |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OIZ                                                    |         |         |             | 40.00     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OD                                                     |         |         |             | 16.69     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPOR |         |         |             |           |                   |                  | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Y                                                      |         |         |             |           |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ATA                                                    |         |         |             |           |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| /ET                                                    |         |         |             |           |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 回                                                      |         |         |             | 16.88     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |         |         |             |           | 0.09 <sub>⊥</sub> |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |         |         |             |           | 0.40              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |         |         |             |           | 0.13 ⊥            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |         |         |             | 8         | 0.16 _            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        |         |         |             |           |                   |                  | CNW, MVT, LIM, GRT, PSG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                        |         |         |             |           | 0.14 _            |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        | 17 10   |         |             | 17.10     |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                        | 17.10   |         |             | 17.10     |                   |                  | LAS.t.l O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - 1                                                    |         |         | Lance South |           | 2                 | Section Sections | The state of the s |

DIRETTORE DI LABORATORIO

SPERIMENT

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

**CERTIFICATO** n°

CSP\_11/1328-01

DATA EMISSIONE

31/01/2012

Pagina 3 di 3

RAPPRESENTAZIONE FOTOGRAFICA DEL CAMPIONE

SONDAGGIO nº:

CAMPIONE: CI 4

PROFONDITA':

16.50

17.10

m



DIRETTORE DI LABORATORIO

SPERIMENTA

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 2

CERTIFICATO nº:

CSP 11/1328-02

**COMMESSA:** 

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1328 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

**COMMITTENTE:** GRAN FRUTTA ZANI COOP, AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI4

Profondità:

16.50 -

17.10 m

**DATA PRELIEVO:** 

1

**PRELIEVO EFFETTUATO:** 

da ditta SOGEO

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

## IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE | DESCRIZIONE PROVA      | n° prove | NORMATIVA DI RIFERIMENTO |
|--------|------------------------|----------|--------------------------|
| GRA    | Analisi granulometrica | 1        | ASTM D 422               |

DATA INIZIO PROVA:

18/01/2012

DATA TERMINE PROVA:

26/01/2012

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Geol. Paolo COLL

Il Direttoria di Laboratorio Dott. Geol. Dario GRUNDLER

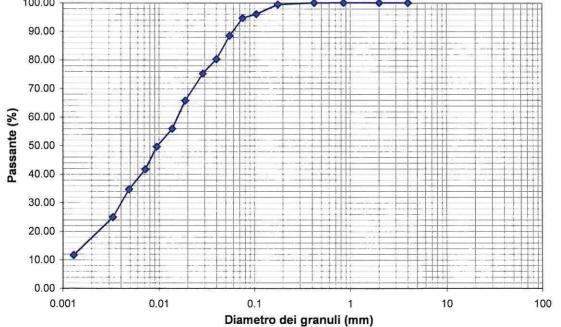
Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA

01909241208 - R.E.A. 398565

CPR\_007 (Rev. 1 del 04/05)

File: CSP\_11\_1328\_02

CERTIFICATO n° CSP 11/1328-02 DATA EMISSIONE 31/01/2012
Pagina 2 di 2


ANALISI GRANULOMETRICA - ASTM D 422

SONDAGGIO: 1 CAMPIONE: CI 4 PROFONDITA': 16.50 ÷ 17.10 m

| Д          | NALISI PER | VAGLIATUI      | RA         | ANALISI PER SE           | DIME     | NTAZ  | IONE     | 200/     |
|------------|------------|----------------|------------|--------------------------|----------|-------|----------|----------|
| massa pro  | vino 31    | 13.66 g        | e Nove IIV | massa provino 4          | 16.99    | g     |          | 3.52.000 |
| profondità | provino 1  | 7.00 ÷ 1       | 7.10 m     | profondità provino 1     | 17.00    | ÷     | 17.10    | m        |
| VAGLI      | APERTURA   | PASSANTE       | TRATTENUTO | G <sub>s</sub> 2         | 2.758    | - de  | etermi   | nato     |
|            | mm         | % in peso      | % in peso  | Riferimento: Certificato | CSP 1    | 1/132 | 28-04    |          |
| 1 1/2 "    | 38.1       |                | 46         | eseguita sul passante a  | l vaglio | 2     | 00       |          |
| 1"         | 25.4       | -              | _          | aerometro ASTM 15        | 51H      |       |          |          |
| 3/4 "      | 19.05      | : <del>-</del> | -          | DIAMETRO EQUIVALENTE     | % IN P   | ESO I | PIU' FIN | IE DI D  |
| 3/8 "      | 9.525      | _              | <u>-</u>   | D (mm)                   |          |       |          |          |
| 5          | 4          | 100.00         | 0.00       | 0.05468                  |          | 88    | 3.46     |          |
| 10         | 2          | 100.00         | 0.00       | 0.03990                  |          | 80    | ).25     |          |
| 20         | 0.85       | 99.98          | 0.02       | 0.02874                  |          | 75    | 5.19     |          |
| 30         | 0.59       |                | -          | 0.01878                  |          | 65    | 5.71     |          |
| 40         | 0.42       | 99.95          | 0.04       | 0.01371                  |          | 55    | 5.92     |          |
| 50         | 0.297      |                |            | 0.00943                  |          | 49    | 9.60     |          |
| 80         | 0.177      | 99.36          | 0.59       | 0.00716                  |          | 4     | 1.70     |          |
| 100        | 0.149      | -              | -          | 0.00486                  |          | 34    | 1.75     |          |
| 140        | 0.105      | 96.01          | 3.34       | 0.00329                  | [        | 24    | 1.96     |          |
| 200        | 0.075      | 94.63          | 1.39       | 0.00129                  | I        | 1     | 1.69     |          |

ARGILLA LIMO SABBIA GHIAIA CIOTTOLI

Fine Medio Gross. Fine Media Gross. Fine Media Gross



DIRETTORE DI LABORATORIO

Speriprientatore

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +59-051768869 - Fax 6/39-0516058949

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL

CPR\_007 (Rev. 1 del 04/05)

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel, +39-051768869 - Fax +39-0516058949

CERTIFICATO n°:

CSP 11/1328-03

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1328 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI 4

Profondità:

16.50 -

17.10

m

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da:

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

## IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE | DESCRIZIONE PROVA                            | n° prove | NORMATIVA DI RIFERIMENTO |
|--------|----------------------------------------------|----------|--------------------------|
| LIM    | Determinazione del limite liquido e plastico | 1        | CNR-UNI 10014            |

DATA INIZIO PROVA:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA

23/01/12

DATA TERMINE PROVA:

24/01/12

TIMBRO BLU SULL' ORIGINALE

**SPERIMENTATORE** Dott. Geol. Paolo COLL

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. – Reg. Imp. BO, C.F. e P. IVA \$\int 01909241208 - R.E.A. 398565

CPR\_008 (Rev. 1 del 04/05)

File: CPR\_008\_LIM.xls

**CERTIFICATO** n°

CSP 11/1328-03

DATA EMISSIONE

31/01/2012

Pagina 2 di 2

**DETERMINAZIONE DEI LIMITI DI CONSISTENZA** 

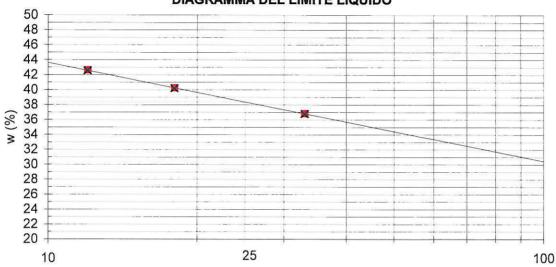
CNR-UNI 10014

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L' AUTORIZZAZIONE SCRITTA DELLA SINERGEA SH.

**CAMPIONE:** 

CI 4


PROFONDITA':

16.50 ÷

17.10 m

| Profondità provino            | m  |         | 17.00   | -17.10  |   |
|-------------------------------|----|---------|---------|---------|---|
| Determinazione                | n° | 1       | 2       | 3       | 4 |
| Massa tara                    | g  | 34.6731 | 54.1231 | 42.4912 | - |
| Numero colpi                  |    | 12      | 18      | 33      | _ |
| Massa provino umido + tara    | g  | 64.5505 | 85.8130 | 70.2307 | - |
| Massa provino secco + tara    | g  | 55.6278 | 76.7256 | 62.7686 |   |
| Contenuto in acqua            | %  | 42.6    | 40.2    | 36.8    |   |
| Limite Liquido w <sub>L</sub> | %  |         | 3       | 8       |   |

## **DIAGRAMMA DEL LIMITE LIQUIDO**



#### NUMERO DI COLPI

| Determinazione                 | n° | 1       | 2       | 3 | 4 |
|--------------------------------|----|---------|---------|---|---|
| Massa tara                     | g  | 25.2842 | 22.2725 | - | - |
| Massa provino umido + tara     | g  | 27.143  | 24.1146 |   | - |
| Massa provino secco + tara     | g  | 26.8301 | 23.8076 | - | - |
| Contenuto in acqua             | %  | 20.2    | 20.0    | - | - |
| Limite Plastico w <sub>P</sub> | %  |         | 20      |   | - |

|                | Indice di Plasticità (w <sub>L</sub> - w <sub>P</sub> ) |  |  |  |  |  |
|----------------|---------------------------------------------------------|--|--|--|--|--|
| l <sub>P</sub> | 18                                                      |  |  |  |  |  |

DIRETTORE DI LABORATORIO

Spepingenta

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

CERTIFICATO nº:

CSP 11/1328-04

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1328 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP, AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI4 Profondità: 16.50 -

17.10 m

**DATA PRELIEVO:** 

**PRELIEVO EFFETTUATO:** 

da ditta SOGEO

DATI FORNITI da:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA 5º

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

## IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE | DESCRIZIONE PROVA                           | n° prove | NORMATIVA DI RIFERIMENTO |
|--------|---------------------------------------------|----------|--------------------------|
| PSG    | Determinazione del peso specifico dei grani | 1        | CNR UNI 10013            |

DATA INIZIO PROVA:

24/01/12

DATA TERMINE PROVA:

26/01/12

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Geol. Paolo COL IL DIRETTORE DEL LABORATORIO Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565



erl

#### LABORATORIO GEOTECNICO

Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geotecniche dei terreni (settore a), ai sensi dell' art, 8 del D.P.R. 246/93

**CERTIFICATO** n°

CSP 11/1328-04

DATA EMISSIONE

31/01/2012

Pagina 2 di 2

DETERMINAZIONE DEL PESO SPECIFICO DEI GRANI (Gs)

SONDAGGIO:

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SIL

1

**CAMPIONE:** 

CI4

PROFONDITA':

16.50

17.10 m

NORMATIVA DI RIFERIMENTO: CNR UNI 10013

| PROFONDITA' PROVINO                   | da m           | 17       | .00 am   | 17.10    |
|---------------------------------------|----------------|----------|----------|----------|
| DETERMINAZIONE n°                     |                | , 50455F | 1        | 2        |
| Picnometro n°                         |                |          | 9        | 12       |
| Peso picnometro                       | Р              | g        | 49.1867  | 42.2508  |
| Peso picnometro + campione            | P+Cs           | g        | 80.6567  | 66.3564  |
| Peso campione secco                   | Cs             | g        | 31.4700  | 24.1056  |
| Peso picnometro + acqua               | Pa             | g        | 179.2568 | 155.7851 |
| Peso picnometro + acqua + campione    | Pt             | g        | 199.3549 | 171.1233 |
| Temperatura dell' acqua               | T              | °C       | 20       | 20       |
| Massa volumica H₂0 alla temperatura T | γW             | Mg/m³    | 0.99823  | 0.99823  |
| Peso specifico dei grani              | G <sub>s</sub> | -        | 2.767    | 2.749    |
| Massa volumica della parte solida     | γs             | Mg/m³    | 2.762    | 2.745    |
| Valore medio $\gamma_{\rm s}$         |                | Mg/m³    | 2.7      | 754      |
| Valore medio G <sub>s</sub>           | 2.7            | 758      |          |          |

IL DIRETTORE DEL LABORATORIO



SPERIMENTATORE

40057 Granarolo dell'Emilia, via Badini 6/6 Fraz. Quarto Inferiore - Tel. +39-051768869 - Fax +39-0516058949

File: CPR\_005\_PSG.xls

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

| CE | DT           | F | CA | NTO   | no |   |
|----|--------------|---|----|-------|----|---|
|    | $\mathbf{r}$ |   |    | • • • |    | - |

CSP 11/1328-05

**COMMESSA:** 

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1328 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO:

Personale tecnico della ditta SOGEO

**COMMITTENTE:** GRAN FRUTTA ZANI COOP, AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

1

Fustella di acciaio

Sondaggio:

Campione:

CI 4 Profondità: 16.50 -17.10

m

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da:

<u>È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA 91</u>

Dott. Geol. Albert Van Zutphen

**OSSERVAZIONI:** 

## IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| n° prove | NORMATIVA DI RIFERIMENTO |
|----------|--------------------------|
| 1        | CNR-UNI 10008            |
|          | n° prove                 |

DATA INIZIO PROVA:

17/01/2012

DATA TERMINE PROVA:

18/01/2012

| DETERMINAZIONE   | (n°)  | 1           | 2     | 3      | 4              | 5 |
|------------------|-------|-------------|-------|--------|----------------|---|
| Profondità       | (m)   | 17.00-17.10 | 90000 |        | N 1183337 - 3  |   |
| Tara             | (n°)  | 251         |       |        |                |   |
| massa tara (t)   | (g)   | 46.76       |       |        |                |   |
| Cu + t           | (g)   | 105.04      |       |        |                |   |
| Cs + t           | (g)   | 92.62       |       | 37 900 |                |   |
| w                | (%)   | 27.1        |       | -      | i <del>.</del> |   |
| Prova di riferin | nento |             |       |        |                |   |

Cu

= massa provino umido

Cs

massa provino secco

contenuto in acqua

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Geol. Paolo COL

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565



Decreto di concessione n° 53083 del 01/03/05 per il rilascio dei certificati relativi alle prove geolecniche dei terreni (settore a), ai sensi dell' art. 8 del D.P.R. 246/93

40057 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

Pagina 1 di 1

**CERTIFICATO** n°:

CSP 11/1328-06

**COMMESSA:** 

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/1328 CSP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

**COMMITTENTE:** GRAN FRUTTA ZANI COOP, AGRICOLA

LOCALITA' :

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

1

DESCRIZIONE PROVA

(Mg/m<sup>3</sup>)

Fustella di acciaio

n° prove

Sondaggio:

Campione:

CI4

Profondità:

16.50

NORMATIVA DI RIFERIMENTO

17.10

**DATA PRELIEVO:** 

PRELIEVO EFFETTUATO:

da ditta SOGEO

DATI FORNITI da:

<u>È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI</u>

CODICE

Dott. Geol. Albert Van Zutphen

1.996

**OSSERVAZIONI:** 

## IL PRESENTE CERTIFICATO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| Massa vo           | Massa volumica con fustella tarata |             |      | 1 [p.i POP_003 |          |            |  |
|--------------------|------------------------------------|-------------|------|----------------|----------|------------|--|
| DATA INIZIO PROVA: | 17/01/2012                         |             |      | DATA TERMIN    | E PROVA: | 17/01/2012 |  |
| PROVA n°           | (-)                                | 1           | 2    | 3              | 4        | 5          |  |
| Profondità         | (m)                                | 17.00-17.10 |      |                |          |            |  |
| Fustella n°        | (-)                                | -           | 7,00 |                | ***      |            |  |
| Massa fustella (t) | (g)                                | 52.44       |      |                | 1,-1,4,- |            |  |
| V                  | (cm³)                              | 40          |      | -              | -        | -          |  |
| Cu + t             | (g)                                | 132.27      |      |                |          |            |  |

Cu

= massa provino umido

Riferimento

Volume fustella

massa volumica

TIMBRO BLU SULL' ORIGINALE

SPERIMENTATORE Dott. Geol. Paolo COLL

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA: 01909241208 - R.E.A. 398565

CPR\_003 (Rev. 2 del 06/09)

File: CPR\_003\_MVT sls

40050 Granarolo dell'Emilia (BO) - Loc. Quarto Inf. - via Badini, 6/6 - Tel. +39-051768869 - Fax +39-0516058949

RAPPORTO DI PROVA nº:

RSP 11/0907-01

COMMESSA:

11/239

**VERBALE DI ACCETTAZIONE n°:** 

11/0907 SP

RICHIEDENTE:

Dott. Geol. Albert Van Zutphen

CONSEGNATARIO: Personale tecnico della ditta SOGEO

COMMITTENTE: GRAN FRUTTA ZANI COOP. AGRICOLA

LOCALITA':

**FAENZA** 

CANTIERE: VIA MONTE SANT' ANDREA, 4

**DATA DI ACCETTAZIONE:** 

21/12/11

**DATA DI EMISSIONE:** 

31/01/12

**DESCRIZIONE CONTENITORE DEL CAMPIONE:** 

Fustella di acciaio

Sondaggio:

Campione:

CI 4

Profondità:

16.50 -

17.10 m

**DATA PRELIEVO:** 

da ditta SOGEO

DATI FORNITI da:

**PRELIEVO EFFETTUATO:** 

Dott. Geol. Albert Van Zutphen

OSSERVAZIONI: -

#### IL PRESENTE RAPPORTO DI PROVA HA PER OGGETTO LE SEGUENTI PROVE e/o DETERMINAZIONI :

| CODICE | DESCRIZIONE PROVA                   | n° prove | NORMATIVA DI RIFERIMENTO |
|--------|-------------------------------------|----------|--------------------------|
| CFV    | Caratteristiche fisico-volumetriche | 1        | Norme applicabili        |

Prima emissione REV. DESCRIZIONE

**SPERIMENTATORE** Dott. Geol. Paolo COLLI

Il Direttore di Laboratorio Dott. Geol. Dario GRUNDLER

Cap. soc. €. 43.350 i.v. - Reg. Imp. BO, C.F. e P. IVA:

01909241208 - R.E.A. 398565

È VIETATA LA RIPRODUZIONE PARZIALE O TOTALE DEL PRESENTE RAPPORTO DI PROVA SENZA L'AUTORIZZAZIONE SCRITTA DELLA SINERGEA SI



RAPPORTO DI PROVA

RSP\_11/0907-01

**DATA EMISSIONE** 

31/01/2012

Pag 2 di 2

# **DETERMINAZIONE DELLE CARATTERISTICHE FISICO - VOLUMETRICHE**

SONDAGGIO:

1

Massa volumica del terreno saturo

**CAMPIONE:** 

CI 4

PROFONDITA':

(Mg/m³)

 $\gamma_{sat}$ 

16.50

2.005

17.10 m

| PROFONDITA' PROVINO                                         | da m           | 17.           | 00 am 17.10 |
|-------------------------------------------------------------|----------------|---------------|-------------|
| Umidità naturale<br>CPR di riferimento: CSP 11/1328-05      | w              | (%)           | 27.08       |
| Massa volumica totale CPR di riferimento: CSP 11/1328-06    | γ              | (Mg/m³)       | 1.996       |
| Massa volumica secca                                        | γd             | (Mg/m³)       | 1.570       |
| Peso specifico dei grani CPR di riferimento: CSP 11/1328-04 | G <sub>s</sub> | 5 <u>-</u> 1) | 2.758       |
| Massa volumica della parte solida                           | γs             | (Mg/m³)       | 2.747       |
| Temperatura dell' acqua                                     | Τ              | °C            | 29          |
| Massa volumica H <sub>2</sub> 0 alla temperatura T          | γw             | Mg/m³         | 0.99597     |
| Indice dei vuoti                                            | е              | 100           | 0.75        |
| Porosità                                                    | n              | (%)           | 42.8        |
| Grado di saturazione                                        | S              | (%)           | 99.31       |

È VIETATA LA RIPRODUZIONE PARZIALE DEL PRESENTE RAPPORTO DI PROVA SENZA L' AUTORIZZAZIONE SCRITTA DELLA SINERGEA SA

Sperimentatore